CONTEXT

The risk of invasive device–related thrombosis and bleeding contributes to morbidity and mortality, yet their prevalence by device-types is poorly understood.

OBJECTIVES

This study aimed to estimate pooled proportions and rates of thrombotic and bleeding complications associated with invasive devices in pediatric health care.

DATA SOURCES

Medline, CINAHL, Embase, Web of Science, Scopus, Cochrane CENTRAL, clinical trial registries, and unpublished study databases were searched.

STUDY SELECTION

Cohort studies and trials published from January 2011 to June 2022, including (1) indwelling invasive devices, (2) pediatric participants admitted to a hospital, (3) reporting thrombotic and bleeding complications, and (4) published in English, were included.

DATA EXTRACTION

Meta-analysis of observational studies in epidemiology guidelines for abstracting and assessing data quality and validity were used.

MAIN OUTCOMES AND MEASURES

Device-specific pooled thromboses (symptomatic, asymptomatic, unspecified) and bleeding (major, minor).

RESULTS

Of the 107 studies, 71 (66%) focused on central venous access devices. Symptomatic venous thromboembolism in central venous access devices was 4% (95% confidence interval [CI], 3–5; incidence rate 0.03 per 1000 device-days, 95% CI, 0.00–0.07), whereas asymptomatic was 10% (95% CI, 7–13; incidence rate 0.25 per 1000 device-days, 95% CI, 0.14–0.36). Both ventricular assist devices (28%; 95% CI, 19–39) and extracorporeal membrane oxygenation (67%; 95% CI, 52–81) were often associated with major bleeding complications.

CONCLUSIONS

This comprehensive estimate of the incidence and prevalence of device-related thrombosis and bleeding complications in children can inform clinical decision-making, guide risk assessment, and surveillance.

Indwelling invasive medical devices play a crucial role in providing health care to children.1  These devices serve as gateways for administering treatments, draining or sampling fluids, and assisting with organ function. The majority of invasive devices commonly used in pediatric health care involve insertion through the skin into the vascular system or major organ.2 

These insertion characteristics result in a risk of thrombosis and bleeding.3  A thrombosis is a healthy response to localized trauma to the vascular system. As the final step in the hemostasis cascade after the insertion of a medical device, the blood coagulates, resulting in a mass of fibrin and blood cells within or around the device and surrounding vessels.4  If the insertion was traumatic, this can lead to increased thrombin propagation, resulting in an increased risk of thrombus that becomes occlusive within the vessel. A physiologic thrombus becomes problematic if the child’s fibrinolytic system is compromised (eg, in sepsis, hemodilution, and imbalanced coagulation factors). These pathologic thrombi can vary in severity, symptomatology, and sequelae but often cause poor device performance (ie, occlusion) and blood flow obstruction and can lead to serious health consequences such as pulmonary embolism or postthrombotic syndrome.4,5 

At the other end of the spectrum, device-related bleeding can occur because of mechanical trauma during insertion or removal of the device and/or coagulopathy caused either by underlying pathologies or therapies. The morbidity and mortality associated with device-related bleeding vary between minor (eg, insertion site bruising, leakage) to major (eg, blood transfusion requirement, symptomatic bleeding in a critical area or organ) events.6 

Despite the importance of invasive devices, only a few studies have reported the complications associated with specific devices, such as central venous access devices (CVADs).7,8  However, comprehensive data regarding the prevalence of associated complications in different types of invasive devices have not been examined in the pediatric population.

Our review aimed to analyze and present thrombotic and bleeding rates associated with individual invasive devices in the current pediatric literature. This synthesis can be used to provide a point of comparison, motivate quality improvement programs, and highlight the need for future research and safety agendas.

We prospectively developed and registered a review protocol (PROSPERO registration number: CRD42021254922). The review has been reported in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses9  and the Meta-analysis of Observational Studies in Epidemiology reporting guidelines.10 

A systematic search for published and unpublished cohort studies and clinical trials examining complications of indwelling invasive devices used in pediatric health care was initially conducted on May 25, 2021, and an updated search was conducted on June 16, 2022. An information specialist developed the Medical Subject Heading-informed search criteria (Supplemental Table 5 for references in online-only supplementary materials) and searched databases for published studies (Medline [via PubMed], CINAHL, Embase, Web of Science, Scopus, Cochrane CENTRAL), clinical trial registries (Clinicaltrials.gov, Australian New Zealand Clinical Trials Registry, International Clinical Trials Registry Platform), and unpublished study databases (ProQuest Dissertations and Theses, Open Access Theses and Dissertations, and MedNar). Reference lists of included articles were also screened. The results of all searches were entered into the Covidence software program11  for screening. A large search was performed to identify a range of invasive device outcomes (infection, thrombosis, device performance), with the results separated into 3 separate meta-analyses for clarity.

To be included, primary studies had to include: (1) indwelling invasive devices (ie, a medical device penetrating inside the body, either through an orifice or skin for an extended period (ie, not only during procedures), used in pediatric health care,12,13  (2) pediatric participants admitted to a hospital (postneonatal or maternal discharge to 18 years), (3) report device-related thrombosis or bleeding, and (4) using cohort (retrospective or prospective) or a clinical trial (with an established standard care arm) design. Studies with full-text data, available in English, and published from January 2011 to June 2022, were included. We excluded studies based in NICUs and home settings (because of separate health service systems and clinical teams).

Outcomes evaluated were device-related thrombosis (categorized as symptomatic, asymptomatic, and unspecified) and postinsertion major and minor bleeding (definition detailed in Table 1). These complication definitions were aligned with international guidelines.1416 

TABLE 1

Outcome Domains, Complications, Definitions, and Criteria

DomainComplicationDefinitionSubcriteria
Device-related thrombosis: including venous-thromboembolism, pulmonary embolism, deep vein thrombosis, thrombosis Venous thromboembolism With radiologic confirmation Symptomatic - author defined 
Other thrombus Asymptomatic - author defined 
Unspecified - not specified as above 
Bleeding Bleeding and/or hematoma Post insertion, as per primary study authors. Major: fatal bleeding and/or symptomatic bleeding in a critical area or organ, such as intracranial, intraspinal, intraocular, retroperitoneal, intra-articular or pericardial, or intramuscular with compartment syndrome, and/or bleeding causing a fall in hemoglobin levels of 1.24 mmol/L (20 g/L or greater) or more, or leading to a transfusion of 2 U or more of whole blood or red cells. 
Minor: all reported bleedings not classified as major. 
DomainComplicationDefinitionSubcriteria
Device-related thrombosis: including venous-thromboembolism, pulmonary embolism, deep vein thrombosis, thrombosis Venous thromboembolism With radiologic confirmation Symptomatic - author defined 
Other thrombus Asymptomatic - author defined 
Unspecified - not specified as above 
Bleeding Bleeding and/or hematoma Post insertion, as per primary study authors. Major: fatal bleeding and/or symptomatic bleeding in a critical area or organ, such as intracranial, intraspinal, intraocular, retroperitoneal, intra-articular or pericardial, or intramuscular with compartment syndrome, and/or bleeding causing a fall in hemoglobin levels of 1.24 mmol/L (20 g/L or greater) or more, or leading to a transfusion of 2 U or more of whole blood or red cells. 
Minor: all reported bleedings not classified as major. 

As per Meta-analysis of Observational Studies in Epidemiology recommendations,10  the eligibility criteria were applied to the systematic search results, and all identified references were screened independently by 2 reviewers using a 2-stage approach. The screening of titles and abstracts and the full-text review were performed by 2 authors using Covidence systematic review.11  Any disagreement between these investigators was resolved by discussion with the senior author.

Two authors independently extracted relevant data, including author, publication year, country, study design, setting, number of patients and devices, device type, study method, the case of device-related thrombosis and bleeding complications, and device days. The extracted data were reviewed by a third investigator.

Each article was independently evaluated for methodological quality by 2 reviewers using the Joanna Briggs Institute Critical Appraisal Checklist for systematic reviews of prevalence and incidence.17  Any disagreement was resolved by a third reviewer. Each question was assessed as either a “yes,” “no,” “unclear,” or “not applicable” with the total number of points for each paper calculated. A quality score was assigned to each article, represented as a percentage, which was calculated by dividing the total number of points scored by a paper by the total number of questions for the given tool. Studies were not excluded based on their bias assessment.

Score confidence intervals (CI) with Freeman-Tukey double arcsine transformations were calculated for studies with dichotomous outcomes (complication or no complication), and Poisson confidence intervals and SEs were calculated for incidence rate (IR) outcomes. Pooled estimates were generated with random-effects meta-analysis and presented with a 95% CI. IR outcomes (continuous data) were pooled by using inverse variance with the DerSimonian and Laird method, per 1000 device days and 95% CI. Heterogeneity between studies was assessed using I-squared statistics, categorized as low (<25%), moderate (25% to 75%), or high (>75%).18  Outcomes with a single study were reported descriptively. Posthoc subgroup analyses by patient settings (intensive care, oncology and hematology, all pediatrics [across all hospital settings], renal, cardiac, neuro, and gastro-enterology-nutrition and hepatology) were conducted to examine differences in outcomes between varying risk patient populations and to investigate heterogeneity, which is reported in the main findings per each device. Sensitivity analyses were performed by the risk of bias (ROB) and study design. The ROB of the included studies was assessed using the Joanna Briggs Institute tool for prevalence studies (Supplemental Table 6).17  The defined questions were scored with 1 for “Yes” and 0 for “No” or “Unclear.” The total score of each article was calculated by the sum of its points. Based on this tool, studies were rated as low risk and high risk with scores 0 to 7 and 8 to 9, respectively. Statistical analysis was performed using Stata 15 (Stata Corp, College Station, TX), with a statistical significance of P value < .05.

Figure 1 illustrates the study selection, summarized with a Preferred Reporting Items for Systematic Reviews and Meta-Analyses study flow diagram. The initial search identified a total of 3951 potentially relevant studies. After screening the titles and abstracts, 744 full-text articles were assessed for eligibility. Eventually, 107 studies met the inclusion criteria of device-related thrombotic and bleeding complications and were included in the review (Table 2).

FIGURE 1

Flow diagram of study selection.

FIGURE 1

Flow diagram of study selection.

Close modal
TABLE 2

Summary of Included Studies Characteristics

Number of Studies (%) (n = 107)
Study design  
 Retrospective cohort study 66 (61.7) 
 Prospective cohort study 29 (27.1) 
 Randomized controlled study 11 (10.3) 
 Nonrandomized experimental study 1 (0.9) 
Study population  
 All pediatrics (across all hospital settings) 31 (29.0) 
 PICU 26 (24.3) 
 Oncology and Hematology 23 (21.5) 
 Cardiology 16 (15.0) 
 Nephrology 6 (5.6) 
 Gastro-enterology-nutrition 3 (2.8) 
 Neurology 1 (0.9) 
 Hepatology 1 (0.9) 
Year of publication  
 2011 4 (3.7) 
 2012 5 (4.7) 
 2013 7 (6.5) 
 2014 9 (8.4) 
 2015 15 (14.0) 
 2016 18 (16.8) 
 2017 9 (8.4) 
 2018 13 (12.2) 
 2019 13 (12.2) 
 2020 11 (10.3) 
 2021 3 (2.8) 
Place of publication  
 North America 52 (48.6) 
 Europe 30 (28.0) 
 Asia 17 (15.9) 
 Oceania 7 (6.5) 
 International collaboration 1 (0.9) 
Device types (N = 107)  
 Central vascular access device 71 (66.4) 
 Ventricular assist device 15 (14.0) 
 Extracorporeal membrane oxygenation 5 (4.7) 
 Nasogastric or gastrostomy tube 4 (3.7) 
 Arterial catheter 4 (3.7) 
 Endotracheal or tracheostomy device 3 (2.8) 
 Peripheral intravenous catheter 3 (2.8) 
 External ventricular drain 1 (0.9) 
 Peritoneal dialysis catheter 1 (0.9) 
Number of Studies (%) (n = 107)
Study design  
 Retrospective cohort study 66 (61.7) 
 Prospective cohort study 29 (27.1) 
 Randomized controlled study 11 (10.3) 
 Nonrandomized experimental study 1 (0.9) 
Study population  
 All pediatrics (across all hospital settings) 31 (29.0) 
 PICU 26 (24.3) 
 Oncology and Hematology 23 (21.5) 
 Cardiology 16 (15.0) 
 Nephrology 6 (5.6) 
 Gastro-enterology-nutrition 3 (2.8) 
 Neurology 1 (0.9) 
 Hepatology 1 (0.9) 
Year of publication  
 2011 4 (3.7) 
 2012 5 (4.7) 
 2013 7 (6.5) 
 2014 9 (8.4) 
 2015 15 (14.0) 
 2016 18 (16.8) 
 2017 9 (8.4) 
 2018 13 (12.2) 
 2019 13 (12.2) 
 2020 11 (10.3) 
 2021 3 (2.8) 
Place of publication  
 North America 52 (48.6) 
 Europe 30 (28.0) 
 Asia 17 (15.9) 
 Oceania 7 (6.5) 
 International collaboration 1 (0.9) 
Device types (N = 107)  
 Central vascular access device 71 (66.4) 
 Ventricular assist device 15 (14.0) 
 Extracorporeal membrane oxygenation 5 (4.7) 
 Nasogastric or gastrostomy tube 4 (3.7) 
 Arterial catheter 4 (3.7) 
 Endotracheal or tracheostomy device 3 (2.8) 
 Peripheral intravenous catheter 3 (2.8) 
 External ventricular drain 1 (0.9) 
 Peritoneal dialysis catheter 1 (0.9) 

The summary of the included studies is shown in Table 2. A total of 57 360 devices and 1 701 559 device days were included. Most studies were retrospective (66 studies; 62%) or prospective (29 studies; 27%) cohort studies, based in North America (52 studies; 49%), involving children admitted across a pediatric hospital (31 studies; 29%), to the PICU (26 studies; 24%), or to an oncology and hematology unit (23 studies; 22%). The review found 9 invasive devices; the most commonly studied device was the central venous access device (CVAD; 71 studies; 66%), followed by ventricular assist devices (VAD; 15 studies; 14%). There were 46 studies (43%) that scored over 80% on quality scores (Supplemental Table 6), but common quality issues included unclear outcome definition, conditions not measured in a standard, reliable way for all patients, and unclear response rate or management.

Table 3 presents the pooled proportion and IR of thrombosis and bleeding categorized by device types. Proportions and incidence rates of thromboses and bleeding complications across device types by settings are summarized in Table 4.

TABLE 3

Proportions and Incidence Rates (per 1000 catheter days) of Thromboses and Bleeding Complications Across Device Types

Device TypeInfection TypeStudies (N)Devices (N)Outcome (N)Pooled %95% CIStudiesDevice DaysComplicationsPooled IR95% CI
Central venous access device            
 Symptomatic venous-thromboembolism 23 25 352 708 3–5d,e 10 813 221 55 0.03 0.00–0.07c,f 
 Asymptomatic venous-thromboembolism 42 25 416 1640 10 7–13d,e 17 732 457 278 0.25 0.14–0.36d,e 
 Major bleeding 1103 28 0–13a,e 2166 1.39 0.00–3.27a,f 
 Minor bleeding 11 3039 23 1–5d,e 221 257 28 0.12 0.00–0.25c,f 
Peripheral intravenous catheter            
 Asymptomatic venous-thromboembolism 30 20 10–37a,e — — — — — 
 Minor bleeding 296 18 3–8a,e — — — — — 
Arterial catheter            
 Symptomatic venous-thromboembolism 615 20 2–5a,e 1977 20 10.12 5.39–14.84a,e 
 Asymptomatic venous-thromboembolism 228 0–2a,e — — — — — 
 Minor bleeding 339 50 14 5–25a,e — — — — — 
Extracorporeal membrane oxygenation cannula            
 Unspecified thrombosis 353 84 19 7–34d,e — — — — — 
 Major Bleeding 269 194 67 52–81a,e — — — — — 
 Minor bleeding 84 13 12 6–21a,e — — — — — 
Ventricular assist device            
 Unspecified thrombosis 725 126 33 13–57d,e 3647 2.47 0.69–4.25a,e 
 Major bleeding 14 1223 350 28 19–39d,e 3647 1.10 0.00–2.35a,f 
Nasogastric and gastrostomy tube            
 Major bleeding 1418 0–1a,e — — — — — 
 Minor bleeding 82 20 23 14–33a,e — — — — — 
Peritoneal dialysis catheter            
 Major bleeding 17 0–10a,f — — — — — 
External ventricular drainage            
 Major bleeding 73 13 18 11–28a,e — — — — — 
Endotracheal and tracheostomy device            
 Minor bleeding 240 0–2a,f — — — — — 
Device TypeInfection TypeStudies (N)Devices (N)Outcome (N)Pooled %95% CIStudiesDevice DaysComplicationsPooled IR95% CI
Central venous access device            
 Symptomatic venous-thromboembolism 23 25 352 708 3–5d,e 10 813 221 55 0.03 0.00–0.07c,f 
 Asymptomatic venous-thromboembolism 42 25 416 1640 10 7–13d,e 17 732 457 278 0.25 0.14–0.36d,e 
 Major bleeding 1103 28 0–13a,e 2166 1.39 0.00–3.27a,f 
 Minor bleeding 11 3039 23 1–5d,e 221 257 28 0.12 0.00–0.25c,f 
Peripheral intravenous catheter            
 Asymptomatic venous-thromboembolism 30 20 10–37a,e — — — — — 
 Minor bleeding 296 18 3–8a,e — — — — — 
Arterial catheter            
 Symptomatic venous-thromboembolism 615 20 2–5a,e 1977 20 10.12 5.39–14.84a,e 
 Asymptomatic venous-thromboembolism 228 0–2a,e — — — — — 
 Minor bleeding 339 50 14 5–25a,e — — — — — 
Extracorporeal membrane oxygenation cannula            
 Unspecified thrombosis 353 84 19 7–34d,e — — — — — 
 Major Bleeding 269 194 67 52–81a,e — — — — — 
 Minor bleeding 84 13 12 6–21a,e — — — — — 
Ventricular assist device            
 Unspecified thrombosis 725 126 33 13–57d,e 3647 2.47 0.69–4.25a,e 
 Major bleeding 14 1223 350 28 19–39d,e 3647 1.10 0.00–2.35a,f 
Nasogastric and gastrostomy tube            
 Major bleeding 1418 0–1a,e — — — — — 
 Minor bleeding 82 20 23 14–33a,e — — — — — 
Peritoneal dialysis catheter            
 Major bleeding 17 0–10a,f — — — — — 
External ventricular drainage            
 Major bleeding 73 13 18 11–28a,e — — — — — 
Endotracheal and tracheostomy device            
 Minor bleeding 240 0–2a,f — — — — — 

One study can report multiple complications. Device-related thrombosis: including venous-thromboembolism, pulmonary embolism, deep vein thrombosis, thrombosis. One study reported both symptomatic and asymptomatic venous thromboembolism. Single studies are reported as descriptive only. —, no data available.

a

Heterogeneity of studies cannot be calculated.

b

Heterogeneity of studies low (<25%).

c

Heterogeneity of studies moderate (25% to 75%).

d

Heterogeneity of studies high (>75%).

e

Effect-size test significant.

f

Effect-size test nonsignificant.

TABLE 4

Proportions and Incidence Rates (per 1000 catheter days) of Thromboses and Bleeding Complications Across Device Types by Patient Settings

Device TypeInfection TypeStudies (N)Devices (N)Outcome (N)Pooled %95% CIStudiesDevice DaysComplicationsPooled IR95% CI
Central venous access device            
 Symptomatic venous-thromboembolism 23 25 352 708 3–5d,e,g 10 813 221 55 0.03 0.00–0.07c,f,g 
  All pediatrics 7311 279 2–7d,e 274 994 20 1.03 0.00–3.59c,e 
  PICU 559 37 3–9a,e 228 4.39 0.00–16.55c,f 
  Oncology and hematology 4825 77 0–3d,e 500 052 11 0.02 0.00–0.04b,e 
  Cardiac 12 368 296 2–2a,e 2166 4.16 1.16–7.15a,e 
  Renal 242 14 1–6a,e 35 781 14 1.15 0.00–3.50d,f 
  Gastro-enterology-nutrition and hepatology 47 11 5–23a,e — — — — — 
 Asymptomatic venous-thromboembolism 42 25 416 1640 10 7–13d,e,g 17 732 457 278 0.25 0.14–0.36d,e,g 
  All pediatrics 13 11 065 729 3–12d,e 342 195 175 0.47 0.19–0.74d,e 
  PICU 10 3953 261 15 5–28a,e 15 555 63 6.05 1.67–10.44c,e 
  Oncology and hematology 13 9305 508 3–7d,e 284 237 36 0.09 0.02–0.17c,e 
  Cardiac 787 18 1–3a,e — — —   
  Renal 170 103 61 54–68a,e — — —   
  Gastro–enterology-nutrition and hepatology 136 21 12 7–18a,e 90 470 0.04 0.00–0.10a,f 
 Major bleeding 1103 28 0–13a,e,g 2166 1.39 0.00–3.27a,f 
  PICU 372 25 4–9a,e — — — — — 
  Cardiac 731 0–1a,e 2166 1.39 0.00–3.27a,f 
 Minor bleeding 11 3039 23 1–5d,e,g 221 257 28 0.12 0.00–0.25c,f,h 
  All pediatrics 965 0–1a,e — — — — — 
  Oncology and hematology 1486 36 1–11d,e 182 769 14 0.10 0.00–0.25b,f 
  Cardiac 280 1–5ae 2166 1.85 0.00–3.96a,f 
  Renal 308 10 0–10a,e 36 322 10 0.48 0.00–1.37c,f 
Peripheral intravenous catheter            
 Asymptomatic venous-thromboembolism 30 20 10–37a,e — — — — — 
  All pediatrics 30 20 10–37a,e — — — — — 
 Minor bleeding 296 18 3–8a,e — — — — — 
  All pediatrics 296 18 3–8a,e — — — — — 
Arterial catheter            
 Symptomatic venous-thromboembolism 615 20 2–5a,e 1977 20 10.12 5.39–14.84a,e 
  PICU 615 20 2–5a,e 1977 20 10.12 5.39–14.84a,e 
 Asymptomatic venous-thromboembolism 228 0–2a,e — — — — — 
  PICU 228 0–2a,e — — — — — 
 Minor bleeding 339 50 14 5–25a,e,g — — — — — 
  All pediatrics 52 14 10–20a,e — — — — — 
  PICU 228 33 255 16–38a,e — — — — — 
  Cardiac 59 15 1–13a,e — — — — — 
Extracorporeal membrane oxygenation cannula            
 Unspecified thrombosis 353 84 19 7–34d,e,h — — — — — 
  PICU 330 81 23 7–44a,e — — — — — 
  Cardiac 23 13 1–31a,e — — — — — 
 Major bleeding 269 194 67 52–a,e,h — — — — — 
  PICU 258 188 74 68–79a,e — — — — — 
  Cardiac 11 55 28–79a,e — — — — — 
 Minor bleeding 84 13 12 6–21a,e,g — — — — — 
  PICU 72 4–17a,e — — — — — 
  Cardiac 12 585 32–81a,e — — — — — 
Ventricular assist device            
 Unspecified thrombosis 725 126 33 13–57d,e,h 3647 2.47 0.69–4.25a,e 
  PICU 490 106 34 7–69d,e 3647 2.47 0.69–4.25a,e 
  Cardiac 235 20 34 1–80d,e — — — — — 
 Major bleeding 14 1223 350 28 19–39d,e,h 3647 1.10 0.00–2.35a,f 
  PICU 791 206 23 10–39d,e 3647 1.10 0.00–2.35a,f 
  Cardiac 432 144 33 23–44c,e — — — — — 
Nasogastric or gastrostomy tube            
 Major bleeding 1418 0–1a,e — — — — — 
  All pediatrics 1418 0–1a,e — — — — — 
 Minor bleeding 82 20 23 14–33a,e,h — — — — — 
  Gastro–enterology nutrition and hepatology 66 19 29 19–41a,e      
  Oncology and hematology 16 1–28af      
Peritoneal dialysis catheter            
 Major bleeding 17 0–10a,r — — — — — 
  Renal 17 0–10a,f — — — — — 
External ventricular drainage            
 Major bleeding 73 13 18 11–28a,e — — — — — 
  Neurology only 73 13 18 11–28a,e — — — — — 
Endotracheal and tracheostomy device            
 Minor bleeding 240 0–2a,f — — — — — 
  PICU 240 0–2a,f — — — — — 
Device TypeInfection TypeStudies (N)Devices (N)Outcome (N)Pooled %95% CIStudiesDevice DaysComplicationsPooled IR95% CI
Central venous access device            
 Symptomatic venous-thromboembolism 23 25 352 708 3–5d,e,g 10 813 221 55 0.03 0.00–0.07c,f,g 
  All pediatrics 7311 279 2–7d,e 274 994 20 1.03 0.00–3.59c,e 
  PICU 559 37 3–9a,e 228 4.39 0.00–16.55c,f 
  Oncology and hematology 4825 77 0–3d,e 500 052 11 0.02 0.00–0.04b,e 
  Cardiac 12 368 296 2–2a,e 2166 4.16 1.16–7.15a,e 
  Renal 242 14 1–6a,e 35 781 14 1.15 0.00–3.50d,f 
  Gastro-enterology-nutrition and hepatology 47 11 5–23a,e — — — — — 
 Asymptomatic venous-thromboembolism 42 25 416 1640 10 7–13d,e,g 17 732 457 278 0.25 0.14–0.36d,e,g 
  All pediatrics 13 11 065 729 3–12d,e 342 195 175 0.47 0.19–0.74d,e 
  PICU 10 3953 261 15 5–28a,e 15 555 63 6.05 1.67–10.44c,e 
  Oncology and hematology 13 9305 508 3–7d,e 284 237 36 0.09 0.02–0.17c,e 
  Cardiac 787 18 1–3a,e — — —   
  Renal 170 103 61 54–68a,e — — —   
  Gastro–enterology-nutrition and hepatology 136 21 12 7–18a,e 90 470 0.04 0.00–0.10a,f 
 Major bleeding 1103 28 0–13a,e,g 2166 1.39 0.00–3.27a,f 
  PICU 372 25 4–9a,e — — — — — 
  Cardiac 731 0–1a,e 2166 1.39 0.00–3.27a,f 
 Minor bleeding 11 3039 23 1–5d,e,g 221 257 28 0.12 0.00–0.25c,f,h 
  All pediatrics 965 0–1a,e — — — — — 
  Oncology and hematology 1486 36 1–11d,e 182 769 14 0.10 0.00–0.25b,f 
  Cardiac 280 1–5ae 2166 1.85 0.00–3.96a,f 
  Renal 308 10 0–10a,e 36 322 10 0.48 0.00–1.37c,f 
Peripheral intravenous catheter            
 Asymptomatic venous-thromboembolism 30 20 10–37a,e — — — — — 
  All pediatrics 30 20 10–37a,e — — — — — 
 Minor bleeding 296 18 3–8a,e — — — — — 
  All pediatrics 296 18 3–8a,e — — — — — 
Arterial catheter            
 Symptomatic venous-thromboembolism 615 20 2–5a,e 1977 20 10.12 5.39–14.84a,e 
  PICU 615 20 2–5a,e 1977 20 10.12 5.39–14.84a,e 
 Asymptomatic venous-thromboembolism 228 0–2a,e — — — — — 
  PICU 228 0–2a,e — — — — — 
 Minor bleeding 339 50 14 5–25a,e,g — — — — — 
  All pediatrics 52 14 10–20a,e — — — — — 
  PICU 228 33 255 16–38a,e — — — — — 
  Cardiac 59 15 1–13a,e — — — — — 
Extracorporeal membrane oxygenation cannula            
 Unspecified thrombosis 353 84 19 7–34d,e,h — — — — — 
  PICU 330 81 23 7–44a,e — — — — — 
  Cardiac 23 13 1–31a,e — — — — — 
 Major bleeding 269 194 67 52–a,e,h — — — — — 
  PICU 258 188 74 68–79a,e — — — — — 
  Cardiac 11 55 28–79a,e — — — — — 
 Minor bleeding 84 13 12 6–21a,e,g — — — — — 
  PICU 72 4–17a,e — — — — — 
  Cardiac 12 585 32–81a,e — — — — — 
Ventricular assist device            
 Unspecified thrombosis 725 126 33 13–57d,e,h 3647 2.47 0.69–4.25a,e 
  PICU 490 106 34 7–69d,e 3647 2.47 0.69–4.25a,e 
  Cardiac 235 20 34 1–80d,e — — — — — 
 Major bleeding 14 1223 350 28 19–39d,e,h 3647 1.10 0.00–2.35a,f 
  PICU 791 206 23 10–39d,e 3647 1.10 0.00–2.35a,f 
  Cardiac 432 144 33 23–44c,e — — — — — 
Nasogastric or gastrostomy tube            
 Major bleeding 1418 0–1a,e — — — — — 
  All pediatrics 1418 0–1a,e — — — — — 
 Minor bleeding 82 20 23 14–33a,e,h — — — — — 
  Gastro–enterology nutrition and hepatology 66 19 29 19–41a,e      
  Oncology and hematology 16 1–28af      
Peritoneal dialysis catheter            
 Major bleeding 17 0–10a,r — — — — — 
  Renal 17 0–10a,f — — — — — 
External ventricular drainage            
 Major bleeding 73 13 18 11–28a,e — — — — — 
  Neurology only 73 13 18 11–28a,e — — — — — 
Endotracheal and tracheostomy device            
 Minor bleeding 240 0–2a,f — — — — — 
  PICU 240 0–2a,f — — — — — 

One study can report multiple complications. One study reported both symptomatic and asymptomatic venous thromboembolism. Single studies are reported as descriptive only. —, no data available.

a

Heterogeneity of studies cannot be calculated.

b

Heterogeneity of studies low (<25%).

c

Heterogeneity of studies moderate (25% to 75%).

d

Heterogeneity of studies high (>75%).

e

Effect size test significant.

f

Heterogeneity of studies nonsignificant.

g

Test for heterogeneity between subgroups significant.

h

Test for heterogeneity between subgroups nonsignificant.

Central Venous Access Device

In relation to the complications associated with CVADs, the pooled proportion of symptomatic venous thromboembolism (VTE) complications in CVADs was 4% (95% CI, 3–5; 23 studies; 25 352 devices) and IR 0.03 per 1000 device days (95% CI, 0.00–0.07; 10 studies; 813 221 device days), whereas the pooled proportion of asymptomatic VTE complications in CVADs was 10% (95% CI, 7–13; 42 studies; 25 416 devices) and IR 0.25 per 1000 device days (95% CI, 0.14–0.36; 17 studies; 732 457 device days). Both estimates had high heterogeneity and significant effect sizes for proportion and IR for asymptomatic VTE, but IR for symptomatic VTE had moderate heterogeneity. The pooled proportion of major bleeding was estimated at 4% (95% CI, 0–13; 3 studies; 1103 devices) and IR of 1.39 per 1000 device days (95% CI, 0.00–3.27; 1 study; 2166 device days), whereas the pooled proportion of minor bleeding was estimated at 3% (95% CI, 1–5; 11 studies; 3039 devices) with IR of 0.12 per 1000 device days (95% CI, 0.00–0.25; 6 studies; 221 257 device days). IR for minor bleeding had a moderate heterogeneity.

In the subgroup analyses, for patient settings of more than 2 studies, PICU had the highest symptomatic VTE proportion (6%, 95% CI, 3–9; 3 studies; 559 devices). For asymptomatic VTE, renal settings had the highest proportion (61%, 95% CI 54–68, 2 studies; 170 devices), and PICU settings had the highest IR (6.05 per 1000 devices days, 95% CI 1.67–10.44, 3 studies; 15 555 device days).

Peripheral Intravenous Catheters

Only 1 study reported asymptomatic VTE with a proportion of 20% (95% CI 10–37; 30 devices). The pooled proportion of minor bleeding was 5% (95% CI 3–8; 2 studies; 296 devices). The studies were all from all pediatric settings.

Arterial Catheter

There was only 1 study with an arterial catheter device for symptomatic VTE (3%, 95% CI 2–5; 615 devices) and 1 study of asymptomatic VTE (0%, 95% CI 0–2; 228 devices). The pooled proportion of minor bleeding was 14% (95% CI 5–25, 3 studies; 339 devices) from all pediatrics, PICU, and cardiac settings.

Extracorporeal Membrane Oxygenation Cannula

For unspecified thrombosis, extracorporeal membrane oxygenation (ECMO) had a pooled proportion of 19% (95% CI, 7–34; 5 studies; 353 devices). Pooled proportion for major bleeding was 67% (95% CI, 52–81; 3 studies; 269 devices), and 12% for minor bleeding (95% CI 6–21, 2 studies; 84 devices). The subgroup analysis showed that the PICU setting (23%, 95% CI 7–44, 3 studies, 330 devices) had a higher proportion of unspecified thrombosis compared with the cardiac setting (13%, 95% CI 1–31, 2 studies; 23 devices).

Ventricular Assist Device

VADs had a pooled proportion of 33% (95% CI 13–57; 9 studies; 725 devices) and IR of 2.47 per 1000 device days (95% CI 0.69–4.25, 1 study; 3 647 device days) for unspecified thrombosis (Supplemental Fig 2). For major bleeding, VADs had an overall pooled proportion of 28% (95% CI 19–39; 14 studies; 1223 devices) and IR of 1.10 per 1000 device days (95% CI 0.00–2.35, 1 study; 3647 device days). The subgroup analysis yielded similar proportions for unspecified thrombosis and major bleeding across PICU and cardiac settings.

Nasogastric and Gastrostomy Tube

Nasogastric and gastrostomy tubes had a pooled proportion of 0% (95% CI 0–1, 2 studies; 1418 devices) for major bleeding and 23% for minor bleeding (95% CI 14–33; 2 studies; 82 devices). Major bleeding had only 1 setting (all pediatrics), and minor bleeding only had 1 study each for gastro-enterology-nutrition and hepatology and oncology and hematology.

Endotracheal and Tracheostomy

Endotracheal and tracheostomy devices had a pooled proportion of 0% for minor bleeding (95% CI; 0–2; 240 devices) across 3 studies conducted in a PICU setting.

Peritoneal Dialysis Catheter

Peritoneal dialysis catheter had no major bleeding (95% CI 0–10) reported in a single study from a renal setting.

External Ventricular Drainage

External ventricular drainage had a pooled proportion of 18% for major bleeding (95% CI 11–28) from a single study with 73 devices.

In a sensitivity analysis, pooled proportions for symptomatic VTE in CVADs were lower for higher ROB studies (3%, 95% CI 2–5; 14 studies; 11 526 devices vs 6%, 95% CI 3–11; 9 studies; 13 826 devices) with the test for heterogeneity between subgroups not significant (Supplemental Table 7). The IR was also lower in higher ROB studies (0.04, 95% CI 1–6; 6 studies; 731 810 device days vs 0.07, 95% CI 0.00–0.26; 3 studies; 79 245 device days). The heterogeneity was moderate for higher ROB studies, and the heterogeneity between subgroups was not significant. For asymptomatic VTE in CVADs, the higher ROB studies had higher pooled proportions compared with lower ROB studies and also had higher pooled IR. In general, the prospective study design had a higher pooled proportion for asymptomatic CVAD, unspecified thrombosis, and major and minor bleeding. However, IR was higher in retrospective study design in symptomatic and asymptomatic VTEs in CVADs (Supplemental Table 8).

Our meta-analysis, involving 107 studies (57 360 devices, 1 701 559 device days), has demonstrated that children hospitalized across the tertiary and regional health sectors remain at considerable risk for thrombosis and bleeding complications associated with their invasive devices.

The findings of this review are in accordance with previous studies that have reported high rates of thrombotic complications associated with CVADs, including pooled 4% symptomatic (IR 0.03 per 1000 device days) and 10% pooled asymptomatic (IR was 0.25 per 1000 device days) venous thromboembolism. However, despite their relative commonality, the sequelae of asymptomatic thrombosis in CVADs are unclear for general cohorts, with single-site studies demonstrating these thromboses, when left untreated, had a minimal impact on health experiences in medically complex and high-risk patients.4  To inform the necessity of routine surveillance and antithrombotic prevention for device-related thrombosis, multicenter studies with blinded radiologic assessments are needed to investigate the natural history of asymptomatic VTEs.

The high rates of major bleeding associated with both VAD (28%; 14 studies, 1223 devices) and ECMO (67%; 3 studies, 269 devices) are concerning. These rates may be because of underlying pathologies, iatrogenic coagulopathy, and anticoagulation regimens. Ironically, many anticoagulant therapies are commenced to prevent or treat device-related thromboses.19,20  Although varying in severity, this type of harm can change their health trajectory, causing immediate morbidity, mortality, and delayed treatment.21,22 

ECMO cannula were also associated with high rates of thrombosis; however, most studies did not report clear outcome definitions, influencing accuracy. The ELSO (Extracorporeal Life Support Organization) registry is an international database that collects and analyzes data on patients who received ECMO support. The data definition on thrombosis is only defined as “cannula exchanged primarily because of clot burden within the cannula” or “circuit component (eg, pigtails, connectors, bridge, arterial, or venous tubing) requiring change because of clot formation or mechanical failure of the component, not equipment,”23  which ignores the thrombosis that do not result in circuit changes and lead to a variety of thrombosis outcome definitions. Therefore, it is crucial to establish a universal consensus on outcome definitions, such as VTE definition in CVADs,24  to ensure accurate and standardized reporting of complications.

Although this result is limited by the comparatively small sample size and use of multiple concurrent devices, the overall picture of high risk in a highly vulnerable patient group is clear. Thrombosis and bleeding complications can severely affect patient outcomes and should be a priority target for significant technology and innovation.25,26  There are key practices and technologies that may reduce device-related complications in pediatric health care. Many of these, such as prophylactic anticoagulation,16  antithrombotic catheter lock therapies,27  antithrombogenic or antimicrobial materials,16,28,29  antithrombotic catheter lock therapies,27  antithrombogenic or antimicrobial materials,28,29  and topical hemostatic agents,30  show potential clinical benefit but are yet to be rigorously evaluated for clinical effectiveness and pediatric practice contexts.

Our meta-analysis has also highlighted several inequities. In particular, most studies were conducted in highly technical, resource-rich settings (eg, North America, PICUs). The rates of thrombotic and bleeding complications associated with invasive devices in other settings are unclear, especially when considering social determinants of health influencing premorbid conditions and treatment options.31,32  The study also draws attention to multiple understudied devices and outcomes, often not included in traditional, infection-related surveillance reports.3133  The study also draws attention to multiple understudied devices and outcomes, often not included in traditional, infection-related surveillance reports.33 

The review has limitations. Firstly, a consistent definition was absent across all device types, and the ambiguous outcomes have been removed. Some studies lacked clarification on whether the complications were because of the device or because of the treatment regimen the patient was on (ie, thrombosis in ECMO or VAD), and these studies were removed from the meta-analysis. Additionally, this meta-analysis included only the inpatient studies; hence, it may not be generalizable to out of hospital and community settings. This removal of these studies may have resulted in estimate imprecision and generalizability. Secondly, the estimate could also be underestimated for some devices because of lower publication frequency (eg, peripheral intravenous catheters) and relying on author-defined outcome events. It is crucial to establish and apply universally agreed definitions for all common device-related complications, like those that have been developed for infections, for studies, and clinicians to be able to benchmark their findings.24  A future study incorporating individual participant data meta-analysis method34  or weighted analysis using utilization rate could potentially quantify a more reliable estimate. Thirdly, overall, the meta-analysis had high heterogeneity across studies and within subgroups. This is expected because of the heterogeneous nature of patients included in the study,35  which is demonstrated in the study population in Table 1 and was the rationale for the subgroup testing. Lastly, the majority of included studies were retrospective cohort studies, which are prone to bias and confounding. Despite the limitations, this meta-analysis can provide an opportunity to target innovation areas, highlighting the areas required for further investigation.

This systematic review provides valuable insights into the rates of thrombotic and bleeding complications associated with individual invasive devices in pediatric patients. The findings highlight the need for improved outcome definition and surveillance strategies of these devices in clinical practice. Further research is needed to better understand the factors contributing to these complications and to develop effective prevention and management strategies, potentially leveraging existing technologies used in other medical devices.

We thank the health librarian (Mr David Honeyman) for their assistance in putting together our search strategy; and Dr Xu and Ms Lions for assisting us with the data collection.

COMPANION PAPERS: Companion to this article can be found online at www.hosppeds.org/cgi/doi/10.1542/hpeds.2023-007194.

DATA SHARING STATEMENT: All of the collected data will be shared including the study protocol. Data will be available upon request. Researchers who provide a methodologically sound proposal can access the data to achieve aims in the approved proposal. Proposals should be directed to [email protected] to gain access; data requestors will need to sign a data access agreement.

Ms Takashima and Dr Ullman conceptualized and designed the study, collected data, conducted the initial analyses, and drafted the initial manuscript; Dr Hyun designed the data collection instruments, collected data, and conducted the initial analyses; Ms Gibson and Dr Newall conceptualized and designed the study; and all authors critically reviewed and revised the manuscript, approved the final manuscript as submitted, and agree to be accountable for all aspects of the work.

This trial has been registered with the Prospective Register (identifier CRD42021254922).

FUNDING: No external funding.

CONFLICT OF INTEREST DISCLOSURES: The authors have indicated they have no potential conflicts of interest to disclose.

1
Srinivasan
L
,
Evans
JR
. 40 - Health care-associated infections. In:
Gleason
CA
,
Juul
SE
, eds.
Avery's Diseases of the Newborn
. 10th ed.
Elsevier
;
2018
:
566
580.e6
2
Ullman
AJ
,
Marsh
N
,
Mihala
G
,
Cooke
M
,
Rickard
CM
.
Complications of central venous access devices: a systematic review
.
Pediatrics
.
2015
;
136
(
5
):
e1331
e1344
3
Wolberg
AS
,
Aleman
MM
,
Leiderman
K
,
Machlus
KR
.
Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited
.
Anesth Analg
.
2012
;
114
(
2
):
275
285
4
Jones
S
,
Butt
W
,
Monagle
P
,
Cain
T
,
Newall
F
.
The natural history of asymptomatic central venous catheter-related thrombosis in critically ill children
.
Blood
.
2019
;
133
(
8
):
857
866
5
Timsit
JF
,
Rupp
M
,
Bouza
E
, et al
.
A state of the art review on optimal practices to prevent, recognize, and manage complications associated with intravascular devices in the critically ill
.
Intensive Care Med
.
2018
;
44
(
6
):
742
759
6
Schulman
S
,
Kearon
C
.
Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non‐surgical patients
.
J Thromb Haemost
.
2005
;
3
(
4
):
692
694
7
Tian
L
,
Li
W
,
Su
Y
, et al
.
Risk factors for central venous access device-related thrombosis in hospitalized children: a systematic review and meta-analysis
.
Thromb Haemost
.
2021
;
121
(
5
):
625
640
8
Rizzi
M
,
Goldenberg
N
,
Bonduel
M
,
Revel-Vilk
S
,
Amankwah
E
,
Albisetti
M
.
Catheter-related arterial thrombosis in neonates and children: a systematic review
.
Thromb Haemost
.
2018
;
118
(
6
):
1058
1066
9
Page
MJ
,
McKenzie
JE
,
Bossuyt
PM
, et al
.
The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
.
BMJ
.
2021
;
372
(
71
):
n71
10
Stroup
DF
,
Berlin
JA
,
Morton
SC
, et al
.
Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group
.
JAMA
.
2000
;
283
(
15
):
2008
2012
11
Covidence
. Covidence systematic review software. Available at: www.covidence.org. Accessed January 1,
2022
12
Chen
S
,
O’Malley
M
,
Chopra
V
.
How common are indwelling devices in hospitalized adults? A contemporary point prevalence study in a tertiary care hospital
.
Am J Infect Control
.
2021
;
49
(
2
):
194
197
13
Ray-Barruel
G
.
I-DECIDED®-a decision tool for assessment and management of invasive devices in the hospital setting
.
Br J Nurs
.
2022
;
31
(
8
):
S37
S43
14
Gorski
LA
,
Hadaway
L
,
Hagle
ME
, et al
.
Infusion therapy standards of practice, 8th edition
.
J Infus Nurs
.
2021
;
44
(
1S Suppl 1
):
S1
S224
15
Edsberg
LE
,
Black
JM
,
Goldberg
M
,
McNichol
L
,
Moore
L
,
Sieggreen
M
.
Revised national pressure ulcer advisory panel pressure injury staging system: revised pressure injury staging system
.
J Wound Ostomy Continence Nurs
.
2016
;
43
(
6
):
585
597
16
Monagle
P
,
Cuello
CA
,
Augustine
C
, et al
.
American Society of Hematology 2018 guidelines for management of venous thromboembolism: treatment of pediatric venous thromboembolism
.
Blood Adv
.
2018
;
2
(
22
):
3292
3316
17
Munn
Z
,
Moola
S
,
Lisy
K
,
Riitano
D
,
Tufanaru
C
. Systematic reviews of prevalence and incidence. In:
Aromatatis
E
,
Munn
Z
, eds.
JBI Manual for Evidence Synthesis
, Chapter 5.
JBI
;
2020
18
Higgins
J
,
Green
S
. Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. Available at: www.handbook.cochrane.org. Accessed September 9, 2022
19
Kahale
LA
,
Tsolakian
IG
,
Hakoum
MB
, et al
.
Anticoagulation for people with cancer and central venous catheters
.
Cochrane Database Syst Rev
.
2018
;
6
(
6
):
CD006468
20
Marin
A
,
Bull
L
,
Kinzie
M
,
Andresen
M
.
Central catheter-associated deep vein thrombosis in cancer: clinical course, prophylaxis, treatment
.
BMJ Support Palliat Care
.
2021
;
11
(
4
):
371
380
21
Halton
KA
,
Cook
D
,
Paterson
DL
,
Safdar
N
,
Graves
N
.
Cost-effectiveness of a central venous catheter care bundle
.
PLoS One
.
2010
;
5
(
9
):
e12815
22
Forbrigger
Z
,
Kulkarni
K
.
Use of tissue plasminogen activator as a surrogate measure for central venous catheter dysfunction and survival outcome in children with cancer: a population-based retrospective cohort study
.
Pediatr Hematol Oncol
.
2020
;
37
(
7
):
554
560
23
Extracorporeal Life Support Organization
. ELSO registry data definitions. Available at: https://www.elso.org/portals/0/files/pdf/elso%20registry%20data%20definitions%2005_17_22.pdf. Accessed April 2023
24
Mitchell
LG
,
Goldenberg
NA
,
Male
C
,
Kenet
G
,
Monagle
P
,
Nowak-Göttl
U
;
Perinatal and Paediatric Haemostasis Subcommittee of the SSC of the ISTH
.
Definition of clinical efficacy and safety outcomes for clinical trials in deep venous thrombosis and pulmonary embolism in children
.
J Thromb Haemost
.
2011
;
9
(
9
):
1856
1858
25
Bull
T
,
Corley
A
,
Smyth
DJ
,
McMillan
DJ
,
Dunster
KR
,
Fraser
JF
.
Extracorporeal membrane oxygenation line-associated complications: in vitro testing of cyanoacrylate tissue adhesive and securement devices to prevent infection and dislodgement
.
Intensive Care Med Exp
.
2018
;
6
(
1
):
6
26
Castrodeza
J
,
Ortiz-Bautista
C
,
Fernández-Avilés
F
.
Continuous-flow left ventricular assist device: current knowledge, complications, and future directions
.
Cardiol J
.
2022
;
29
(
2
):
293
304
27
Bradford
NK
,
Edwards
RM
,
Chan
RJ
.
Normal saline (0.9% sodium chloride) versus heparin intermittent flushing for the prevention of occlusion in long-term central venous catheters in infants and children
.
Cochrane Database Syst Rev
.
2020
;
4
(
4
):
CD010996
28
Ullman
AJ
,
Bulmer
AC
,
Dargaville
TR
,
Rickard
CM
,
Chopra
V
.
Antithrombogenic peripherally inserted central catheters: overview of efficacy and safety
.
Expert Rev Med Devices
.
2019
;
16
(
1
):
25
33
29
Kramer
RD
,
Rogers
MA
,
Conte
M
,
Mann
J
,
Saint
S
,
Chopra
V
.
Are antimicrobial peripherally inserted central catheters associated with reduction in central line-associated bloodstream infection? A systematic review and meta-analysis
.
Am J Infect Control
.
2017
;
45
(
2
):
108
114
30
Safirstein
JG
,
Tehrani
DM
,
Schussler
JM
, et al
.
Radial hemostasis is facilitated with a potassium ferrate hemostatic patch: the STAT2 trial
.
JACC Cardiovasc Interv
.
2022
;
15
(
8
):
810
819
31
Fadoo
Z
,
Nisar
MI
,
Iftikhar
R
,
Ali
S
,
Mushtaq
N
,
Sayani
R
.
Peripherally inserted central venous catheters in pediatric hematology/oncology patients in tertiary care setting: a developing country experience
.
J Pediatr Hematol Oncol
.
2015
;
37
(
7
):
e421
e423
32
Milford
K
,
von Delft
D
,
Majola
N
,
Cox
S
.
Long-term vascular access in differently resourced settings: a review of indications, devices, techniques, and complications
.
Pediatr Surg Int
.
2020
;
36
(
5
):
551
562
33
Rosenthal
VD
,
Duszynska
W
,
Ider
B-E
, et al
.
International nosocomial infection control consortium (INICC) report, data summary of 45 countries for 2013-2018, adult and pediatric units, device-associated module
.
Am J Infect Control
.
2021
;
49
(
10
):
1267
1274
34
Tudur Smith
C
,
Marcucci
M
,
Nevitt
S
, et al
.
Individual participant data meta-analyses compared with meta-analyses based on aggregate data
.
Cochran Database Syst Rev
.
2016
;
9
(
9
):
MR000007
35
Higgins
JPT
.
Commentary: heterogeneity in meta-analysis should be expected and appropriately quantified
.
Int J Epidemiol
.
2008
;
37
(
5
):
1158
1160
36
Abate
ME
,
Sánchez
OE
,
Boschi
R
, et al
.
Analysis of risk factors for central venous catheter-related complications: a prospective observational study in pediatric patients with bone sarcomas
.
Cancer Nurs
.
2014
;
37
(
4
):
292
298
37
Adeb
M
,
Baskin
KM
,
Keller
MS
, et al
.
Radiologically placed tunneled hemodialysis catheters: a single pediatric institutional experience of 120 patients
.
J Vasc Interv Radiol
.
2012
;
23
(
5
):
604
612
38
AlTassan
R
,
Al Alem
H
,
Al Harbi
T
.
Temporary central line related thrombosis in a pediatric intensive care unit in central Saudi Arabia. Two-year incidence and risk factors
.
Saudi Med J
.
2014
;
35
(
4
):
371
376
39
Aparna
S
,
Ramesh
S
,
Appaji
L
, et al
.
Complications of chemoport in children with cancer: Experience of 54,100 catheter days from a tertiary cancer center of Southern India
.
South Asian J Cancer
.
2015
;
4
(
3
):
143
145
40
Asyyed
Z
,
MacDonald
T
,
Digout
C
,
Kulkarni
K
.
Incidence and characteristics of venous thrombotic events in pediatric cancer patients: a 20-year experience in the Maritimes, Canada
.
Pediatr Hematol Oncol
.
2017
;
34
(
2
):
90
99
41
Badheka
AV
,
Hodge
D
,
Ramesh
S
, et al
.
Catheter related thrombosis in hospitalized infants: a neural network approach to predict risk factors
.
Thromb Res
.
2021
;
200
:
34
40
42
Bawazir
O
,
Banoon
E
.
Efficacy and clinical outcome of the port-a-cath in children: a tertiary care-center experience
.
World J Surg Oncol
.
2020
;
18
(
1
):
134
43
Beck
O
,
Muensterer
O
,
Hofmann
S
, et al
.
Central venous access devices (CVAD) in pediatric oncology patients—a single-center retrospective study over more than 9 years
.
Front Pediatr
.
2019
;
7
:
260
44
Bedoya
MA
,
Raffini
L
,
Durand
R
, et al
.
Implantable venous access devices in children with severe hemophilia: a tertiary pediatric institutional experience
.
Pediatr Radiol
.
2020
;
50
(
8
):
1148
1155
45
Beham
K
,
Dave
H
,
Kelly
J
,
Frey
B
,
Hug
MI
,
Brotschi
B
.
Transthoracic intracardiac catheters in pediatric cardiac patients: a single-center experience
.
Paediatr Anaesth
.
2017
;
27
(
9
):
918
926
46
Benvenuti
S
,
Ceresoli
R
,
Boroni
G
,
Parolini
F
,
Porta
F
,
Alberti
D
.
Use of peripherally inserted central venous catheters (PICCs) in children receiving autologous or allogeneic stem-cell transplantation
.
J Vasc Access
.
2018
;
19
(
2
):
131
136
47
Berman
L
,
Sharif
I
,
Rothstein
D
,
Hossain
J
,
Vinocur
C
.
Concomitant fundoplication increases morbidity of gastrostomy tube placement
.
J Pediatr Surg
.
2015
;
50
(
7
):
1104
1108
48
Blume
ED
,
Rosenthal
DN
,
Rossano
JW
, et al
.
PediMACS Investigators
.
Outcomes of children implanted with ventricular assist devices in the United States: first analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS)
.
J Heart Lung Transplant
.
2016
;
35
(
5
):
578
584
49
Brotschi
B
,
Hug
MI
,
Latal
B
, et al
.
Incidence and predictors of indwelling arterial catheter-related thrombosis in children
.
J Thromb Haemost
.
2011
;
9
(
6
):
1157
1162
50
Boe
BA
,
Zampi
JD
,
Yu
S
,
Donohue
JE
,
Aiyagari
R
.
Transhepatic central venous catheters in pediatric patients with congenital heart disease
.
Pediatr Crit Care Med
.
2015
;
16
(
8
):
726
732
51
Buonpane
CL
,
Lautz
TB
,
Langer
M
.
High rates of central venous line replacement or revision in children with cancer at US children’s hospitals
.
J Pediatr Hematol Oncol
.
2022
;
44
(
2
):
43
46
52
Burek
AG
,
Parker
J
,
Bentzien
R
,
Talbert
L
,
Havas
M
,
Hanson
SJ
.
The development of a long peripheral catheter program at a large pediatric academic center: a pilot study
.
Hosp Pediatr
.
2020
;
10
(
10
):
897
901
53
Byrnes
JW
,
Frazier
E
,
Tang
X
, et al
.
Hemorrhage requiring surgical intervention among children on pulsatile ventricular assist device support
.
Pediatr Transplant
.
2014
;
18
(
4
):
385
392
54
Cesaro
S
,
Cavaliere
M
,
Pegoraro
A
,
Gamba
P
,
Zadra
N
,
Tridello
G
.
A comprehensive approach to the prevention of central venous catheter complications: results of 10-year prospective surveillance in pediatric hematology-oncology patients
.
Ann Hematol
.
2016
;
95
(
5
):
817
825
55
Chau
A
,
Hernandez
JA
,
Pimpalwar
S
,
Ashton
D
,
Kukreja
K
.
Equivalent success and complication rates of tunneled common femoral venous catheter placed in the interventional suite vs. at patient bedside
.
Pediatr Radiol
.
2018
;
48
(
6
):
889
894
56
Chen
K
,
Agarwal
A
,
Tassone
MC
, et al
.
Risk factors for central venous catheter-related thrombosis in children: a retrospective analysis
.
Blood Coagul Fibrinolysis
.
2016
;
27
(
4
):
384
388
57
Chowdhury
R
,
Mandal
M
,
Khanra
M
, et al
.
Nasogastric tube insertion in anaesthetised, intubated paediatric patients: a comparison between conventional blind method and ‘throat pack in-situ’ technique
.
J Clin Diagn Res
.
2019
;
13
(
12
):
UC01
UC04
58
Cousin
VL
,
Wildhaber
BE
,
Verolet
CM
,
Belli
DC
,
Posfay-Barbe
KM
,
McLin
VA
.
Complications of indwelling central venous catheters in pediatric liver transplant recipients
.
Pediatr Transplant
.
2016
;
20
(
6
):
798
806
59
Crocoli
A
,
Martucci
C
,
Sidro
L
, et al
.
Safety and effectiveness of subcutaneously anchored securement for tunneled central catheters in oncological pediatric patients: a retrospective study
.
J Vasc Access
.
2023
;
24
(
1
):
35
40
60
Dalton
HJ
,
Reeder
R
,
Garcia-Filion
P
, et al
.
Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network
.
Factors associated with bleeding and thrombosis in children receiving extracorporeal membrane oxygenation
.
Am J Respir Crit Care Med
.
2017
;
196
(
6
):
762
771
61
Delarbre
B
,
Dabadie
A
,
Stremler-Lebel
N
, et al
.
Introduction of the use of a pediatric PICC line in a French University Hospital: review of the first 91 procedures
.
Diagn Interv Imaging
.
2014
;
95
(
3
):
277
281
62
Derderian
SC
,
Good
R
,
Vuille-Dit-Bille
RN
,
Carpenter
T
,
Bensard
DD
.
Central venous lines in critically ill children: thrombosis but not infection is site dependent
.
J Pediatr Surg
.
2019
;
54
(
9
):
1740
1743
63
Dhir
A
,
DeMarsh
S
,
Ramgopal
A
, et al
.
Central venous line associated deep vein thrombosis in hospitalized children
.
J Pediatr Hematol Oncol
.
2019
;
41
(
7
):
e432
e437
64
Diamond
CE
,
Hennessey
C
,
Meldau
J
, et al
.
Catheter-related venous thrombosis in hospitalized pediatric patients with inflammatory bowel disease: incidence, characteristics, and role of anticoagulant thromboprophylaxis with enoxaparin
.
J Pediatr
.
2018
;
198
:
53
59
65
Di Molfetta
A
,
Gandolfo
F
,
Filippelli
S
, et al
.
The use of Berlin Heart EXCOR VAD in children less than 10 kg: a single center experience
.
Front Physiol
.
2016
;
7
:
614
66
DiPietro
LM
,
Gaies
M
,
Banerjee
M
, et al
.
Central venous catheter utilization and complications in the pediatric cardiac icu: a report from the Pediatric Cardiac Critical Care Consortium (PC4)
.
Pediatr Crit Care Med
.
2020
;
21
(
8
):
729
737
67
Dolcino
A
,
Salsano
A
,
Dato
A
, et al
.
Potential role of a subcutaneously anchored securement device in preventing dislodgment of tunneled-cuffed central venous devices in pediatric patients
.
J Vasc Access
.
2017
;
18
(
6
):
540
545
68
Douglas
CM
,
Poole-Cowley
J
,
Morrissey
S
,
Kubba
H
,
Clement
WA
,
Wynne
D
.
Paediatric tracheostomy-an 11 year experience at a Scottish paediatric tertiary referral centre
.
Int J Pediatr Otorhinolaryngol
.
2015
;
79
(
10
):
1673
1676
69
Dulhunty
JM
,
Suhrbier
A
,
Macaulay
GA
, et al
.
Guide-wire fragment embolisation in paediatric peripherally inserted central catheters
.
Med J Aust
.
2012
;
196
(
4
):
250
255
70
Fallon
SC
,
Shekerdemian
LS
,
Olutoye
OO
, et al
.
Initial experience with single-vessel cannulation for venovenous extracorporeal membrane oxygenation in pediatric respiratory failure
.
Pediatr Crit Care Med
.
2013
;
14
(
4
):
366
373
71
Faustino
EVS
,
Spinella
PC
,
Li
S
, et al
.
Incidence and acute complications of asymptomatic central venous catheter-related deep venous thrombosis in critically ill children
.
J Pediatr
.
2013
;
162
(
2
):
387
391
72
Faustino
EVS
,
Li
S
,
Silva
CT
, et al
.
Northeast Pediatric Critical Care Research Consortium
.
Factor VIII may predict catheter-related thrombosis in critically ill children: a preliminary study
.
Pediatr Crit Care Med
.
2015
;
16
(
6
):
497
504
73
Camkiran Firat
A
,
Zeyneloglu
P
,
Ozkan
M
,
Pirat
A
.
A randomized controlled comparison of the internal jugular vein and the subclavian vein as access sites for central venous catheterization in pediatric cardiac surgery
.
Pediatr Crit Care Med
.
2016
;
17
(
9
):
e413
e419
74
Fragasso
T
,
Ricci
Z
,
Grutter
G
, et al
.
Incidence of healthcare-associated infections in a pediatric population with an extracorporeal ventricular assist device
.
Artif Organs
.
2011
;
35
(
11
):
1110
1114
75
Fu
AB
,
Hodgman
EI
,
Burkhalter
LS
,
Renkes
R
,
Slone
T
,
Alder
AC
.
Long-term central venous access in a pediatric leukemia population
.
J Surg Res
.
2016
;
205
(
2
):
419
425
76
Garcia
X
,
Pye
S
,
Tang
X
,
Gossett
J
,
Prodhan
P
,
Bhutta
A
.
Catheter-associated blood stream infections in intracardiac lines
.
J Pediatr Intensive Care
.
2017
;
6
(
3
):
159
164
77
Gnannt
R
,
Waespe
N
,
Temple
M
, et al
.
Increased risk of symptomatic upper-extremity venous thrombosis with multiple peripherally inserted central catheter insertions in pediatric patients
.
Pediatr Radiol
.
2018
;
48
(
7
):
1013
1020
78
Goel
D
,
Smitthimedhin
A
,
Yadav
B
, et al
.
Ultrasound-detected venous changes associated with peripheral intravenous placement in children
.
Br J Nurs
.
2020
;
29
(
8
):
S44
S49
79
Gray
BW
,
Gonzalez
R
,
Warrier
KS
, et al
.
Characterization of central venous catheter-associated deep venous thrombosis in infants
.
J Pediatr Surg
.
2012
;
47
(
6
):
1159
1166
80
Guo
Z
,
Yang
Y
,
Zhang
W
, et al
.
Extracorporeal cardiopulmonary resuscitation in children after open heart surgery
.
Artif Organs
.
2019
;
43
(
7
):
633
640
81
Habas
F
,
Baleine
J
,
Milési
C
, et al
.
Supraclavicular catheterization of the brachiocephalic vein: a way to prevent or reduce catheter maintenance-related complications in children
.
Eur J Pediatr
.
2018
;
177
(
3
):
451
459
82
Hebal
F
,
Sparks
HT
,
Rychlik
KL
,
Bone
M
,
Tran
S
,
Barsness
KA
.
Pediatric arterial catheters: complications and associated risk factors
.
J Pediatr Surg
.
2018
;
53
(
4
):
794
797
83
Herd
F
,
Miller
T
,
van Delft
FW
,
Gabra
HO
.
The peripheral portacath provides safe and convenient venous access in pediatric and adolescent patients
.
J Pediatr Surg
.
2019
;
54
(
7
):
1449
1452
84
Hsu
KH
,
Huang
SC
,
Chou
NH
, et al
.
Ventricular assist device application as a bridge to pediatric heart transplantation: a single center’s experience
.
Transplant Proc
.
2012
;
44
(
4
):
883
885
85
Ishii
S
,
Shime
N
,
Shibasaki
M
,
Sawa
T
.
Ultrasound-guided radial artery catheterization in infants and small children
.
Pediatr Crit Care Med
.
2013
;
14
(
5
):
471
473
86
Iyengar
A
,
Hung
ML
,
Asanad
K
, et al
.
Association between hematologic and inflammatory markers and 31 thrombotic and hemorrhagic events in berlin heart excor patients
.
Pediatr Cardiol
.
2017
;
38
(
4
):
770
777
87
Jaffray
J
,
Witmer
C
,
O’Brien
SH
, et al
.
Peripherally inserted central catheters lead to a high risk of venous thromboembolism in children
.
Blood
.
2020
;
135
(
3
):
220
226
88
Jones
S
,
Butt
W
,
Monagle
P
,
Cain
T
,
Newall
F
.
The natural history of asymptomatic central venous catheter-related thrombosis in critically ill children
.
Blood
.
2019
;
133
(
8
):
857
866
89
Jumani
K
,
Advani
S
,
Reich
NG
,
Gosey
L
,
Milstone
AM
.
Risk factors for peripherally inserted central venous catheter complications in children
.
JAMA Pediatr
.
2013
;
167
(
5
):
429
435
90
Kaipa
S
,
Mastropietro
CW
,
Bhai
H
,
Lutfi
R
,
Friedman
ML
,
Yabrodi
M
.
Upper body peripherally inserted central catheter in pediatric single ventricle patients
.
World J Cardiol
.
2020
;
12
(
10
):
484
491
91
Kleidon
TM
,
Ullman
AJ
,
Gibson
V
, et al
.
A pilot randomized controlled trial of novel dressing and securement techniques in 101 pediatric patients
.
J Vasc Interv Radiol
.
2017
;
28
(
11
):
1548
1556.e1
92
Kleidon
T
,
Ullman
AJ
,
Zhang
L
, et al
.
How does your PICCOMPARE? A pilot randomized controlled trial comparing various PICC materials in pediatrics
.
J Hosp Med
.
2018
;
13
(
8
):
517
525
93
Kleidon
TM
,
Rickard
CM
,
Schults
JA
, et al
.
Development of a paediatric central venous access device database: A retrospective cohort study of practice evolution and risk factors for device failure
.
J Paediatr Child Health
.
2020
;
56
(
2
):
289
297
94
Langley
AR
,
Stain
AM
,
Chan
A
, et al
.
Experience with central venous access devices (CVADs) in the Canadian hemophilia primary prophylaxis study (CHPS)
.
Haemophilia
.
2015
;
21
(
4
):
469
476
95
Lavin
J
,
Shah
R
,
Greenlick
H
,
Gaudreau
P
,
Bedwell
J
;
The Global Tracheostomy Collaborative
.
The Global Tracheostomy Collaborative: one institution’s experience with a new quality improvement initiative
.
Int J Pediatr Otorhinolaryngol
.
2016
;
80
:
106
108
96
Li
S
,
Sun
X
,
Wang
Z
.
Observation of short-term catheter induced thrombosis in children treated with blood purification
.
Hippokratia
.
2014
;
18
(
3
):
245
250
97
Li
S
,
Silva
CT
,
Brudnicki
AR
, et al
.
Northeast Pediatric Critical Care Research Consortium
.
Diagnostic accuracy of point-of-care ultrasound for catheter-related thrombosis in children
.
Pediatr Radiol
.
2016
;
46
(
2
):
219
228
98
Ma
GMY
,
Ventura
LM
,
Amiribadi
A
, et al
.
Hemodialysis catheters in infants: a retrospective single-center cohort study
.
J Vasc Interv Radiol
.
2020
;
31
(
5
):
778
786
99
Mangum
DS
,
Verma
A
,
Weng
C
, et al
.
A comparison of central lines in pediatric oncology patients: early removal and patient centered outcomes
.
Pediatr Blood Cancer
.
2013
;
60
(
11
):
1890
1895
100
Marquez
A
,
Shabanova
V
,
Faustino
EVS
;
Northeast Pediatric Critical Care Research Consortium
.
Prediction of catheter-associated thrombosis in critically ill children
.
Pediatr Crit Care Med
.
2016
;
17
(
11
):
e521
e528
101
McLaughlin
CM
,
Barin
EN
,
Fenlon
M
, et al
.
Symptomatic catheter-associated thrombosis in pediatric trauma patients: choose your access wisely
.
Surgery
.
2019
;
166
(
6
):
1117
1121
102
Menéndez
JJ
,
Verdú
C
,
Calderón
B
, et al
.
Incidence and risk factors of superficial and deep vein thrombosis associated with peripherally inserted central catheters in children
.
J Thromb Haemost
.
2016
;
14
(
11
):
2158
2168
103
Merrikhi
A
,
Raji Asadabadi
H
,
Beigi
AA
,
Marashi
SM
,
Ghaheri
H
,
Nasiri Zarch
Z
.
Comparison of percutaneous versus open surgical techniques for placement of peritoneal dialysis catheter in children: a randomized clinical trial
.
Med J Islam Repub Iran
.
2014
;
28
:
38
104
Miller
JR
,
Epstein
DJ
,
Henn
MC
, et al
.
Early biventricular assist device use in children: a single-center review of 31 patients
.
ASAIO J
.
2015
;
61
(
6
):
688
694
105
Miller
C
,
Guillaume
D
.
Incidence of hemorrhage in the pediatric population with placement and removal of external ventricular drains
.
J Neurosurg Pediatr
.
2015
;
16
(
6
):
662
667
106
Noailly Charny
PA
,
Bleyzac
N
,
Ohannessian
R
,
Aubert
E
,
Bertrand
Y
,
Renard
C
.
Increased risk of thrombosis associated with peripherally inserted central catheters compared with conventional central venous catheters in children with leukemia
.
J Pediatr
.
2018
;
198
:
46
52
107
Noonan
PJ
,
Hanson
SJ
,
Simpson
PM
,
Dasgupta
M
,
Petersen
TL
.
Comparison of complication rates of central venous catheters versus peripherally inserted central venous catheters in pediatric patients
.
Pediatr Crit Care Med
.
2018
;
19
(
12
):
1097
1105
108
Onyeama
SN
,
Hanson
SJ
,
Dasgupta
M
,
Baker
K
,
Simpson
PM
,
Punzalan
RC
.
Central venous catheter-associated venous thromboembolism in children with hematologic malignancy
.
J Pediatr Hematol Oncol
.
2018
;
40
(
8
):
e519
e524
109
Pac
M
,
Kocabeyoglu
SS
,
Kervan
U
, et al
.
Third generation ventricular assist device: mid-term outcomes of the heartware hvad in pediatric patients
.
Artif Organs
.
2018
;
42
(
2
):
141
147
110
Paglialonga
F
,
Consolo
S
,
Pecoraro
C
, et al
.
Chronic haemodialysis in small children: a retrospective study of the Italian Pediatric Dialysis Registry
.
Pediatr Nephrol
.
2016
;
31
(
5
):
833
841
111
Pang
H
,
Chen
Y
,
Liu
X
,
He
X
,
Wang
W
,
Liu
Z
.
A randomized trial of ultrasound- versus. Fluoroscopy-guided subclavian vein catheterization in children with hematologic disease
.
Indian J Pediatr
.
2019
;
86
(
11
):
1021
1027
112
Parbhoo
DM
,
Tiedemann
K
,
Catto-Smith
AG
.
Clinical outcome after percutaneous endoscopic gastrostomy in children with malignancies
.
Pediatr Blood Cancer
.
2011
;
56
(
7
):
1146
1148
113
Pektaş
A
,
Kara
A
,
Gurgey
A
.
Cohort study: central venous catheter-related complications in children with hematologic diseases at a single center
.
Turk J Haematol
.
2015
;
32
(
2
):
144
151
114
Piper
HG
,
de Silva
NT
,
Amaral
JG
,
Avitzur
Y
,
Wales
PW
.
Peripherally inserted central catheters for long-term parenteral nutrition in infants with intestinal failure
.
J Pediatr Gastroenterol Nutr
.
2013
;
56
(
5
):
578
581
115
Previtali
P
,
Paladini
S
,
Gandini
L
, et al
.
Role of serial ultrasound screening of venous thrombosis in oncologic children with central lines
.
Pediatr Hematol Oncol J
.
2019
;
4
(
1
):
1
6
116
Ranta
S
,
Kalajoki-Helmiö
T
,
Pouttu
J
,
Mäkipernaa
A
.
MRI after removal of central venous access device reveals a high number of asymptomatic thromboses in children with haemophilia
.
Haemophilia
.
2012
;
18
(
4
):
521
526
117
Redondo
A
,
Davies
B
,
Jones
R
, et al
.
Durable mechanical circulatory support in paediatric heart failure: the experience at Great Ormond Street Hospital
.
Cirugía Cardiovascular
.
2019
;
26
(
1
):
30
34
118
Ren
Y
,
Chang
L
,
Zhao
B
, et al
.
Venous thromboembolism after peripherally inserted central catheters placement in children with acute leukemia: a single-center retrospective cohort study
.
J Pediatr Hematol Oncol
.
2020
;
42
(
6
):
e407
e409
119
Rosenthal
DN
,
Almond
CS
,
Jaquiss
RD
, et al
.
Adverse events in children implanted with ventricular assist devices in the United States: data from the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS)
.
J Heart Lung Transplant
.
2016
;
35
(
5
):
569
577
120
Rus
RR
,
Premru
V
,
Novljan
G
,
Grošelj-Grenc
M
,
Ponikvar
R
.
Fate of central venous catheters used for acute extracorporeal treatment in critically ill pediatric patients: a single center experience
.
Ther Apher Dial
.
2016
;
20
(
3
):
308
311
121
Rykov
MY
,
Zaborovskij
SV
,
Shvecov
AN
,
Shukin
VV
.
Peripherally inserted central catheters in the treatment of children with cancer: results of a multicenter study
.
J Vasc Access
.
2018
;
19
(
4
):
378
381
122
Sandica
E
,
Blanz
U
,
Mime
LB
, et al
.
Long-term mechanical circulatory support in pediatric patients
.
Artif Organs
.
2016
;
40
(
3
):
225
232
123
Schmidt
ML
,
Wendel
D
,
Horslen
SP
, et al
.
Secondary anticoagulation prophylaxis for catheter-related thrombosis in pediatric intestinal failure: comparison of short- vs long-term treatment protocols
.
JPEN J Parenter Enteral Nutr
.
2020
;
45
(
7
):
1432
1440
124
Schmitz
ML
,
Zempsky
WT
,
Meyer
JM
.
Safety and efficacy of a needle-free powder lidocaine delivery system in pediatric patients undergoing venipuncture or peripheral venous cannulation: randomized double-blind COMFORT-004 trial
.
Clin Ther
.
2015
;
37
(
8
):
1761
1772
125
Schoot
RA
,
van Ommen
CH
,
Stijnen
T
, et al
.
Prevention of central venous catheter-associated bloodstream infections in paediatric oncology patients using 70% ethanol locks: a randomised controlled multi-centre trial
.
Eur J Cancer
.
2015
;
51
(
14
):
2031
2038
126
Shin
HS
,
Towbin
AJ
,
Zhang
B
,
Johnson
ND
,
Goldstein
SL
.
Venous thrombosis and stenosis after peripherally inserted central catheter placement in children
.
Pediatr Radiol
.
2017
;
47
(
12
):
1670
1675
127
Smitherman
AB
,
Weston
BW
.
Catheter-associated thrombosis in children: single-institution experience and review of pediatric venous thromboembolic disease
.
J Infus Nurs
.
2014
;
37
(
2
):
103
107
128
Smitherman
AB
,
Alexander
T
,
Connelly
M
, et al
.
The incidence of catheter-associated venous thrombosis in noncritically ill children
.
Hosp Pediatr
.
2015
;
5
(
2
):
59
66
129
Sol
JJ
,
Knoester
H
,
de Neef
M
,
Smets
AM
,
Betlem
A
,
van Ommen
CH
.
Chronic complications after femoral central venous catheter-related thrombosis in critically ill children
.
J Pediatr Hematol Oncol
.
2015
;
37
(
6
):
462
467
130
Speggiorin
S
,
Robinson
SG
,
Harvey
C
, et al
.
Experience with the Avalon® bicaval double-lumen veno-venous cannula for neonatal respiratory ECMO
.
Perfusion
.
2015
;
30
(
3
):
250
254
131
Steiner
ME
,
Bomgaars
LR
,
Massicotte
MP
;
Berlin Heart EXCOR Pediatric VAD IDE study investigators
.
Antithrombotic therapy in a prospective trial of a pediatric ventricular assist device
.
ASAIO J
.
2016
;
62
(
6
):
719
727
132
Syed
KA
,
Naina
P
,
Pokharel
A
,
John
M
,
Varghese
AM
.
Paediatric tracheostomy: a modified technique and its outcomes, results from a South Indian tertiary care
.
Int J Pediatr Otorhinolaryngol
.
2019
;
118
:
6
10
133
Thom
K
,
Male
C
,
Mannhalter
C
, et al
.
No impact of endogenous prothrombotic conditions on the risk of central venous line-related thrombotic events in children: results of the KIDCAT study (KIDs with Catheter Associated Thrombosis)
.
J Thromb Haemost
.
2014
;
12
(
10
):
1610
1615
134
Tolunay
İ
,
Yıldızdaş
RD
,
Elçi
H
,
Alabaz
D
.
Assessment of central venous catheterization and complications in a tertiary pediatric intensive care unit
.
Turk J Pediatr
.
2018
;
60
(
1
):
63
69
135
Ueda
K
,
Puangsuvan
S
,
Hove
MA
,
Bayman
EO
.
Ultrasound visual image-guided vs Doppler auditory-assisted radial artery cannulation in infants and small children by non-expert anaesthesiologists: a randomized prospective study
.
Br J Anaesth
.
2013
;
110
(
2
):
281
286
136
Ullman
AJ
,
Long
D
,
Williams
T
, et al
.
Innovation in central venous access device security: a pilot randomized controlled trial in pediatric critical care
.
Pediatr Crit Care Med
.
2019
;
20
(
10
):
e480
e488
137
van der Meulen
MH
,
Dalinghaus
M
,
Maat
AP
, et al
.
Mechanical circulatory support in the Dutch National Paediatric Heart Transplantation Programme
.
Eur J Cardiothorac Surg
.
2015
;
48
(
6
):
910
916, discussion 916
138
van Els
AL
,
van Driel
JJ
,
Kneepkens
CF
,
de Meij
TG
.
Antibiotic prophylaxis does not reduce the infection rate following percutaneous endoscopic gastrostomy in infants and children
.
Acta Paediatr
.
2017
;
106
(
5
):
801
805
139
White
ML
,
Crawley
J
,
Rennie
EA
,
Lewandowski
LA
.
Examining the effectiveness of 2 solutions used to flush capped pediatric peripheral intravenous catheters
.
J Infus Nurs
.
2011
;
34
(
4
):
260
270
140
Wiegering
V
,
Schmid
S
,
Andres
O
, et al
.
Thrombosis as a complication of central venous access in pediatric patients with malignancies: a 5-year single-center experience
.
BMC Hematol
.
2014
;
14
(
1
):
18
141
Yang
ZH
,
Ning
BT
,
Zhang
CM
,
Lin
R
,
Ye
S
,
Liu
T
.
Clinical application of extracorporeal membrane oxygenation in children with refractory cardiopulmonary failure
.
World J Pediatr
.
2016
;
12
(
3
):
364
367
142
Zafar
F
,
Jefferies
JL
,
Tjossem
CJ
, et al
.
Biventricular Berlin Heart EXCOR pediatric use across the united states
.
Ann Thorac Surg
.
2015
;
99
(
4
):
1328
1334

Supplementary data