OBJECTIVE. The aim of this study was to develop a simple reproducible method for the measurement of apparent diffusion coefficient values in the white matter of preterm infants using diffusion-weighted imaging to test the hypothesis that elevated mean apparent diffusion coefficient values are associated with lower developmental quotient scores at 2 years’ corrected age.

METHODS. We obtained diffusion-weighted imaging in 38 preterm infants at term-equivalent age who had no evidence of overt cerebral pathology on conventional MRI. Mean apparent diffusion coefficient values at the level of the centrum semiovale were determined. The children were assessed using a standardized neurologic examination, and the Griffiths Mental Development Scales were administered to obtain a developmental quotient at 2 years’ corrected age. The relationship between mean apparent diffusion coefficient values and developmental quotient was examined. Clinical data relating to postnatal sepsis, antenatal steroid exposure, supplemental oxygen, gender, patent ductus arteriosus, and inotrope requirement were collected, and the mean apparent diffusion coefficient values for each group were compared.

RESULTS. The mean (±SD) apparent diffusion coefficient value in the white matter was 1.385 ± 0.07 × 10−3 mm2/second, and the mean developmental quotient was 108.9 ± 11.5. None of the children had a significant neurologic problem. There was a significant negative correlation between mean apparent diffusion coefficient and developmental quotient.

CONCLUSION. These findings suggest that higher white matter apparent diffusion coefficient values at term-equivalent age in preterm infants without overt lesions are associated with poorer developmental performance in later childhood. Consequently, apparent diffusion coefficient values at term may be of prognostic value for neurodevelopmental outcome in infants who are born preterm and who have no other imaging indicators of abnormality.

You do not currently have access to this content.