OBJECTIVES. The objectives of this study were to characterize noise and light levels for extremely low birth weight newborns throughout their stay in the NICU, evaluate factors influencing noise and light levels, and determine whether exposures meet recommendations from the American Academy of Pediatrics.

METHODS. Sound and light were measured inside the beds of extremely low birth weight newborns (n = 22) from birth to discharge. Measurements were recorded for 20 consecutive hours weekly from birth until 36 weeks' postmenstrual age, biweekly until 40 weeks, and every 4 weeks thereafter. Clinical variables including bed type and method of respiratory support were recorded at each session.

RESULTS. Age-related changes in respiratory support and bed type explained the weekly increase of 0.22 dB in sound level and 3.67 lux in light level. Old incubators were the noisiest bed types, and new incubators were the quietest. Light levels were significantly higher in open beds than in incubators. The variations in noise and light levels over time were greatest for open beds. Noise and light levels were much less affected by respiratory support in incubators compared with open beds. A typical extremely low birth weight neonate was exposed to noise levels averaging 56.44 dB(A) and light levels averaging 70.56 lux during their stay from 26 to 42 weeks' postmenstrual age in the NICU. Noise levels were rarely within American Academy of Pediatrics recommendations (5.51% of the time), whereas light levels almost always met recommendations (99.37% of the time).

CONCLUSIONS. Bed type and respiratory support explained differences in noise and light levels that extremely low birth weight newborns experience during their hospital stay. Noise levels exceeded recommendations, although evidence supporting those recommendations is lacking. Well-designed intervention studies are needed to determine the effects of noise reduction on the development of extremely low birth weight newborns.

You do not currently have access to this content.