OBJECTIVES:

The goal of this study was to develop an algorithm based on International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), codes for classifying children with chronic disease (CD) according to level of medical complexity and to assess the algorithm’s sensitivity and specificity.

METHODS:

A retrospective observational study was conducted among 700 children insured by Washington State Medicaid with ≥1 Seattle Children’s Hospital emergency department and/or inpatient encounter in 2010. The gold standard population included 350 children with complex chronic disease (C-CD), 100 with noncomplex chronic disease (NC-CD), and 250 without CD. An existing ICD-9-CM–based algorithm called the Chronic Disability Payment System was modified to develop a new algorithm called the Pediatric Medical Complexity Algorithm (PMCA). The sensitivity and specificity of PMCA were assessed.

RESULTS:

Using hospital discharge data, PMCA’s sensitivity for correctly classifying children was 84% for C-CD, 41% for NC-CD, and 96% for those without CD. Using Medicaid claims data, PMCA’s sensitivity was 89% for C-CD, 45% for NC-CD, and 80% for those without CD. Specificity was 90% to 92% in hospital discharge data and 85% to 91% in Medicaid claims data for all 3 groups.

CONCLUSIONS:

PMCA identified children with C-CD (who have accessed tertiary hospital care) with good sensitivity and good to excellent specificity when applied to hospital discharge or Medicaid claims data. PMCA may be useful for targeting resources such as care coordination to children with C-CD.

You do not currently have access to this content.