Respiratory failure secondary to surfactant deficiency is a major cause of morbidity and mortality in preterm infants. Surfactant therapy substantially reduces mortality and respiratory morbidity for this population. Secondary surfactant deficiency also contributes to acute respiratory morbidity in late-preterm and term neonates with meconium aspiration syndrome, pneumonia/sepsis, and perhaps pulmonary hemorrhage; surfactant replacement may be beneficial for these infants. This statement summarizes indications, administration, formulations, and outcomes for surfactant-replacement therapy. The impact of antenatal steroids and continuous positive airway pressure on outcomes and surfactant use in preterm infants is reviewed. Because respiratory insufficiency may be a component of multiorgan dysfunction, preterm and term infants receiving surfactant-replacement therapy should be managed in facilities with technical and clinical expertise to administer surfactant and provide multisystem support.

Surfactant replacement was established as an effective and safe therapy for immaturity-related surfactant deficiency by the early 1990s.121  Systematic reviews of randomized, controlled trials have confirmed that surfactant replacement reduces initial inspired oxygen and ventilation requirements as well as the incidence of respiratory distress syndrome, death, pneumothorax, and pulmonary interstitial emphysema (Table 1). 24,13 

After the initial surfactant efficacy and safety trials were conducted, additional studies led to refinements in treatment strategies,57,10,11,13,2236  choice of preparations,3754  techniques for administration,5565  and indications other than respiratory distress syndrome.6687  The preponderance of evidence indicates that surfactant replacement increases survival rates without an increase in risk of disabilities. Thus, surfactant replacement is associated with an absolute increase in the number of preterm infants who survive with and without disabilities.88112  However, the risk of long-term disability remains uncertain, because few follow-up studies at school age and adolescence for preterm infants treated with surfactant have been reported.*

Antenatal steroid use to stimulate structural maturation and surfactant synthesis in the fetal lung increased significantly after completion of the pivotal surfactant trials.113127  Investigations powered to assess the benefit of antenatal steroid exposure combined with surfactant replacement have not been reported, although secondary analyses of surfactant trials,113,114,116  animal studies,125127  and clinical experience have indicated that, together, the 2 therapies have an additive effect. Preliminary studies of either continuous positive airway pressure alone or exogenous surfactants and rapid extubation to continuous positive airway pressure have suggested that the need for surfactant replacement and incidence of bronchopulmonary dysplasia in extremely preterm infants may be reduced.128144 

The purpose of this clinical report is to update and expand our previous statement about surfactant replacement in newborn infants.1  Specifically, the topics reviewed include efficacy in preterm infants, prophylactic versus rescue surfactant replacement, surfactant preparations and administration techniques, effects of surfactant on short-term and long-term outcomes, and surfactant replacement for respiratory disorders other than respiratory distress syndrome. The impact of antenatal steroid exposure and continuous positive airway pressure on respiratory distress syndrome and surfactant replacement is also discussed. Implications for the clinical use of surfactant and research considerations are suggested.

Surfactant trials with preterm infants have included those between 23 and 34 weeks' gestation and/or with birth weights between 500 and 2000 g. However, the focus of many trials, especially prevention studies, has been on infants of less than 30 weeks' gestation and/or with birth weights of less than 1250 g. The results of subgroup analyses from such studies have indicated that surfactant therapy reduced mortality rates most effectively in infants of less than 30 weeks' gestation or with birth weights of less than 1250 g and more often in male infants.8,11,15,22,27,96  The incidence of other coexistent morbidities in preterm infants, such as bronchopulmonary dysplasia, intraventricular hemorrhage, necrotizing enterocolitis, nosocomial infections, retinopathy of prematurity, and patent ductus arteriosus, has not changed with surfactant replacement.25,7,8,22,24  The onset of clinical signs of patent ductus arteriosus may occur earlier,145148  and the incidence of pulmonary hemorrhage, especially in infants of less than 27 weeks' gestation, may be increased.2,19,149  Of note, surfactant replacement reduces the incidence of pneumothorax, pulmonary interstitial emphysema, and the combined outcome of death or bronchopulmonary dysplasia compared with no surfactant replacement (Table 1); these findings suggest that lung injury is reduced after surfactant replacement. Surfactant replacement is also effective for larger and more mature preterm infants with established respiratory distress syndrome.8,9,22  Compared with controls with similar weights and gestations, larger and more mature surfactant-treated infants had a lower incidence of death (3.4% vs 6.7%; relative risk [RR]: 0.56; 95% confidence interval [CI]: 0.35–0.88; number needed to treat [NNT]: 33)8,9  and bronchopulmonary dysplasia (5.8% vs 10%; RR: 0.57; 95% CI: 0.40–0.81; NNT: 25) (AppendixT5).8,9 

A prophylactic, or preventive, surfactant strategy is defined as intubation and surfactant administration to infants at high risk of developing respiratory distress syndrome for the primary purpose of giving surfactant rather than treatment of respiratory distress syndrome; this has been operationalized in clinical studies as surfactant administration before the onset of respiratory symptoms or efforts, before initial resuscitation efforts, or, most commonly, after initial resuscitation but within 10 to 30 minutes after birth. This contrasts with a rescue, or treatment, surfactant strategy, in which surfactant is given to preterm infants with established respiratory distress syndrome. Rescue surfactant is most often administered within the first 12 hours after birth when specified threshold criteria for respiratory distress syndrome are met.9,2228,34,35  Early rescue was defined as surfactant treatment within 1 to 2 hours of birth, and late rescue was defined as surfactant treatment 2 or more hours after birth.2228,3437 

Preterm infants born at or earlier than 30 weeks' gestation have benefited from both prophylactic and rescue surfactant administration.511,13,14,22,2428  However, infants receiving prophylactic surfactant have had a lower incidence and severity of respiratory distress compared with those treated after developing respiratory distress syndrome.57,10,11,13,22,2428  Infants receiving prophylactic surfactant also have encountered fewer complications58,11,13,14,22,2528  of respiratory distress syndrome, such as death (RR: 0.61; 95% CI: 0.48–0.77; NNT: 22), pneumothorax (RR: 0.62; 95% CI; 0.42–0.89; NNT: 47), pulmonary interstitial emphysema (RR: 0.54; 95% CI: 0.36–0.82; NNT: 40), and the combined outcome of bronchopulmonary dysplasia or death (RR: 0.85; 95% CI: 0.76–0.95; NNT: 24).26 

The risk of developing bronchopulmonary dysplasia after prophylactic surfactant compared with rescue surfactant has been reported in secondary analyses of clinical trials as no different,20,26  decreased,23,25,29  and increased.13  Small sample sizes in the individual clinical trials were insufficient to evaluate the secondary outcome of bronchopulmonary dysplasia alone.13,2029  Therefore, the risk of bronchopulmonary dysplasia in preterm infants of less than 30 weeks' gestation who received prophylactic surfactant compared with those who received later selective treatment is unclear.

The risks of developing other complications of prematurity, such as retinopathy of prematurity, patent ductus arteriosus, and intraventricular hemorrhage, have been evaluated as secondary outcomes in comparative trials of prophylaxis and rescue surfactant treatment.2,3,13,20,26  The preponderance of evidence suggests that the incidence of these outcomes is not significantly different.13,20,26  It is interesting to note, however, that a reduced risk of intraventricular hemorrhage after prophylactic surfactant compared with rescue surfactant was reported in 2 clinical trials and 1 meta-analysis.30,32,33  The findings in these reports have not been corroborated or explained.

Despite the advantages of a prophylactic surfactant strategy for infants born at less than 30 weeks' gestation, many such infants are treated only after respiratory distress syndrome has become established.19,31  In a large North American cohort of 47608 infants of less than 30 weeks' gestation born between 1998 and 2000, 27% received surfactant in the delivery room and 44% received surfactant by 30 minutes of age.31  Before 6 hours of age, however, 79% had been given surfactant.

Few studies have compared prophylactic surfactant with early rescue treatment and early rescue treatment with late rescue treatment.3436,65  Although limited, the results of such studies indicate that surfactant administered prophylactically or as soon as possible in the course of respiratory distress is more effective than late rescue surfactant at improving outcomes.§ It is important to note that such studies were performed with populations of infants who were infrequently exposed to antenatal steroids.2225,2730,35  Thus, the benefits and risks of these different dosing strategies in infants exposed to antenatal steroids have yet to be determined.

Both animal-derived and synthetic surfactants are beneficial for prophylaxis and rescue of respiratory distress syndrome in preterm infants.25,711,14,23,24,39,40  Treatment with animal-derived surfactants (beractant, calfactant, poractant) have several advantages over first-generation protein-free synthetic surfactants (eg, colfosceril palmitate, Pumactant [Britannia Pharmaceuticals Ltd, Redhill, Surrey, England], artificial lung-expanding compound).13,3740,4448,58  These advantages include lower mortality rates (RR: 0.86; 95% CI: 0.76–0.98; NNT: 40),44  lower inspired oxygen and ventilation requirements early in the course of respiratory distress syndrome, and fewer pneumothoraxes (RR: 0.63; 95% CI: 0.53–0.75; NNT: 22).13,37,38,46,47,58  Of note, first-generation protein-free synthetic surfactants are no longer widely available.

New synthetic surfactants that contain proteins or peptides that mimic surfactant protein activity are under investigation.3941,4951  One such surfactant, lucinactant, contains a peptide that mimics the action of surfactant protein B and has been investigated in human clinical trials.3941  Compared with colfosceril palmitate, a first-generation non–peptide-containing synthetic surfactant, lucinactant reduced respiratory morbidity but did not reduce all-cause mortality.40  When compared with infants receiving the animal-derived surfactants beractant and poractant alfa, infants receiving lucinactant were found to have similar rates of mortality and morbidity from respiratory distress syndrome.39,40  More analysis is needed before the findings from lucinactant studies can be generalized because of questions about early trial closure and limited statistical power.3941  Moreover, the metabolic fate of lucinactant and its component chemicals and potential risks introduced by the requirement to convert the lucinactant gel into liquid by using a special warming cradle immediately before instillation need additional study.40,41 

Complications of prematurity are not significantly different between preterm infants treated with various animal-derived surfactants and those treated with synthetic surfactants. Such complications include intraventricular hemorrhage, periventricular leukomalacia, pulmonary hemorrhage, sepsis, patent ductus arteriosus, retinopathy of prematurity, necrotizing enterocolitis, and bronchopulmonary dysplasia.

Animal-derived surfactants in clinical use are modified or purified from bovine or porcine lungs. All commercially available animal-derived surfactants are effective for prevention and treatment of respiratory distress syndrome. However, it is unclear whether significant differences in clinical outcomes exist among the available products.32,33,3943,4548 

Adverse immunologic and infectious complications from exposure to proteins and other components of these animal products have not been identified.52,53,88,98  Efforts to develop more effective and safer surfactant formulations continue to be warranted because of concerns with animal-derived surfactants for transmission of microbes, exposure to animal proteins and inflammatory mediators, susceptibility to inactivation, and inconsistent content.39,40,49,51  Newer synthetic surfactant preparations, if proven to be effective and safe, may address these concerns.39,40,54  Furthermore, the addition of synthetic surfactants to the repertoire of surfactant products provides an animal-free surfactant option.

Surfactant-administration strategies have been based on manufacturer guidelines for individual surfactants. Dose, frequency of administration, and treatment procedures have been modeled after research protocols.7,14,37,39,40,56,57  Furthermore, repeated doses of surfactants given at intervals for predetermined indications have decreased mortality and morbidity compared with placebo or single surfactant doses.7,8,55,57 

Prophylactic surfactant administration after initial resuscitation and stabilization has been associated with fewer complications and similar outcomes than administration before initiation of resuscitative efforts.65  On the other hand, when given to rescue infants with established respiratory distress syndrome, administration of surfactant early in the course has resulted in better outcomes than administration later in the course.34,35  Surfactant-administration procedures may be complicated by transient airway obstruction and inadvertent instillation into the right main-stem bronchus or esophagus. Intratracheal delivery of surfactant can also result in rapid improvement in lung volume, functional residual capacity, and compliance. If so, expeditious changes in mechanical ventilator settings should be made to minimize the risks of lung injury and air leak. Clinicians with expertise in these procedures should be responsible for surfactant administration whenever surfactant is given.

Surfactant has been administered through an endotracheal tube located in the trachea of infants either by bolus or infusion through an adaptor port on the proximal end of the endotracheal tube. In an animal model, administration of surfactant as an intratracheal bolus while disconnected from the mechanical ventilator has more uniform distribution than an infusion administered over 30 minutes through a side-hole adapter.60  However, a small clinical trial of human preterm infants showed no significant differences in clinical outcomes.61  During administration, oxygen desaturation occurred more often when bolus administration was used, whereas reflux into the endotracheal tube occurred more often when the infusion technique was used. Similar clinical outcomes were also found when surfactant was administered as a bolus or as a 1-minute infusion through a side-hole adapter.150  Because data are conflicting and limited, the optimal method of surfactant administration in preterm infants has yet to be clearly proven.

There is insufficient evidence to recommend an optimal number of fractional doses of surfactant. There was no difference in clinical outcomes when 2 fractional doses of surfactant were given in 2 body positions compared with 4 fractional doses given in 4 positions.61  Aerosolized surfactant preparations and continuous positive airway pressure–aided delivery of pharyngeal surfactant theoretically could allow administration without intubation; these preparations and route of delivery have yet to be proven effective.59,6264 

The incidence of bronchopulmonary dysplasia in very low birth weight infants has not changed with surfactant replacement, although survival without bronchopulmonary dysplasia has increased.25,7,22,24,26  In preterm infants born after 29 weeks' gestation, a significantly lower incidence of bronchopulmonary dysplasia has been reported in 2 trials.8,9  Despite surfactant treatment, the risk of respiratory abnormalities later in infancy (recurrent wheezing, asthma, respiratory infection, pulmonary-function test abnormalities) and early childhood remains high for preterm infants with respiratory distress syndrome who require mechanical ventilation.8899  In a small number of patients followed through school age, pulmonary-function studies seem improved by surfactant replacement.90  Additional long-term respiratory-function studies are needed of children who have received surfactant as neonates.

Surfactant replacement increases survival rates without a change in the incidence of neurologic, sensory, or developmental disability in preterm infants followed through infancy# and school age.101103  There is limited information about the effects of surfactant replacement on outcomes at adolescence. An association of surfactant-replacement therapy with cerebral palsy, poor cognitive function, and lower teacher rating of school performance was suggested for 126 infants who were born before 29 weeks' gestation and evaluated by structured telephone interview at 12 to 15 years of age.102  Interpretation of these findings is hampered by small, nonrandomly assigned comparison groups from 3 different protocols; dependence on recall; and bias to include infants with higher severity of illness, because surfactant was given for rescue in 61% of the treated infants. The incidence of neurodevelopmental problems in the surfactant-treated children in this trial was similar to that reported in children born preterm before the introduction of surfactants into clinical medicine.102,103,107,109,110  Thus, it is difficult to generalize the frequency and severity of nonpulmonary morbidity at adolescence in those who received surfactant therapy as newborn infants.** However, we can conclude that surfactant therapy increases survival without altering the incidence of neurosensory and developmental disabilities.101,102,107,109111  As a result, there has been an absolute increase in the number of infants who survive with and without disabilities.

Surfactant activity may be altered in respiratory disorders other than respiratory distress syndrome.6687  Surfactant inactivation and secondary dysfunction may occur with conditions such as meconium aspiration syndrome, persistent pulmonary hypertension of the newborn, neonatal pneumonia, and pulmonary hemorrhage. Techniques for surfactant administration, surfactant dosage, patient populations, entry criteria, and study outcomes in the small randomized trials and case series of surfactant replacement in neonates with secondary surfactant deficiency vary considerably.68,69,72,86,87  Additional studies are needed to establish the value and limitations of surfactant therapy for these conditions.77,81,86,87 

Meconium aspiration syndrome with severe respiratory failure and persistent pulmonary hypertension may be complicated by surfactant inactivation.6670,7275  Surfactant replacement by bolus or slow infusion in infants with severe meconium aspiration syndrome improved oxygenation and reduced the severity of respiratory failure, air leaks, and need for extracorporeal membrane oxygenation (RR: 0.64; 95% CI: 0.46–0.91; NNT: 6).6770,72,75  Although there was no increase in acute morbidity in these infants, transient oxygen desaturation and endotracheal tube obstruction occurred during bolus administration in nearly one third of the surfactant-treated infants.69  Surfactant lavage for meconium aspiration was evaluated in a small, randomized trial; trends toward lower duration of ventilation and severity of illness were reported.66,72,78  However, the failure to complete the lavage procedure in 3 of 15 patients warrants additional safety studies.72,78 

Surfactant replacement for neonates with severe primary persistent pulmonary hypertension of the newborn did not significantly reduce the need for extracorporeal membrane oxygenation in a small clinical trial.70  However, surfactant improved oxygenation and reduced the need for extracorporeal membrane oxygenation when parenchymal lung disease was present.6670,73,77  Surfactant administration to neonates who were receiving extracorporeal membrane oxygenation also reduced the duration of extracorporeal membrane oxygenation.74 

Surfactant inactivation may be associated with pneumonia.66,71,76,86,87  A subgroup of infants with sepsis in a small randomized trial of surfactant rescue therapy showed improved oxygenation and reduction of the need for extracorporeal membrane oxygenation.69  Newborn infants with pneumonia or sepsis receiving rescue surfactant also have demonstrated improved gas exchange compared with infants without surfactant treatment.66,71,73,76,77  The number of neonates who received surfactant for sepsis and pneumonia in these clinical reports is small.

Surfactant treatment for pulmonary hemorrhage is plausible, because blood inhibits surfactant function.66,79,80,87  However, only a few retrospective and observational reports have documented the benefits from such therapy, and the magnitude of benefit remains to be established.79,80,87  Such proof is unlikely to materialize soon, because pulmonary hemorrhage is an unpredictable complication, and randomized trials would be difficult to design and implement.

Congenital diaphragmatic hernia may be associated with surfactant insufficiency. Although measurements of disaturated phosphatidylcholine from lungs of infants with congenital diaphragmatic hernia show synthetic rates similar to those from infants without diaphragmatic hernia, pool sizes and kinetics are altered.82,83  However, surfactant treatment of a large series of infants with congenital diaphragmatic hernia did not improve outcomes. In fact, use of extracorporeal membrane oxygenation, incidence of chronic lung disease, and mortality actually increased.66,8385 

Infants who require surfactant are at high risk of multiorgan dysfunction. For such infants, surfactant replacement is only 1 of the treatments needed. Ideally, such infants would be delivered at institutions that have the necessary services to perform complete neonatal resuscitation and stabilization procedures.151,152  Such services include having the capability to monitor the status of all major organ systems; having the capability to anticipate, recognize, and treat the initial complications of prematurity or other critical illness; and having surfactant therapy available. It is expected that hospitals with delivery services provide for these capabilities. If delivery would occur at a location without such service (such as in a home, ambulance, emergency department, or medical facility without delivery services), after initial resuscitation and stabilization, such infants are best managed by transport or nursery personnel with technical and clinical expertise to provide comprehensive intensive care services, including surfactant administration.151,152 

Surfactant trials that proved efficacy were performed at a time when antenatal steroid therapy was given infrequently.117,118  By the late 1990s, most mothers of preterm infants delivered at less than 30 weeks' gestation had received antenatal steroids (58%–92%).18,19,43,79,118,153155  Antenatal steroids significantly reduce mortality (RR: 0.62; 95% CI: 0.51–0.77; NNT: 23),115  respiratory distress syndrome (RR: 0.65; 95% CI: 0.47–0.75; NNT: 12),115  and surfactant use in preterm infants (RR: 0.45; 95% CI: 0.22–0.93; NNT: 9),115  most consistently in those born between 28 and 34 weeks' gestation.18,25,113120,122 

Results of observational studies and clinical trials have inferred that antenatal steroids may reduce the need for prophylactic and early rescue surfactant replacement in infants born after 27 to 28 weeks' gestation,19,31,35,36  but no randomized, controlled trials have addressed this issue. In infants born at or earlier than 27 weeks' gestation, the incidence of respiratory distress syndrome is not reduced after exposure to antenatal steroids, although the severity of illness seems to be lower.115,116,118120 

Infants born before 32 weeks' gestation who received both antenatal steroids and postnatal surfactant were found on subgroup analyses to have significant reductions in mortality, severity of respiratory distress, and air leaks when compared with subgroups who received neither steroids nor surfactant, antenatal steroids only, or surfactant only.113,114,121  This finding corroborates evidence from animal models of respiratory distress syndrome that the combination of antenatal steroids and postnatal surfactant improves lung function more than either treatment alone.113,125127 

Surfactant trials that compared prophylaxis and rescue treatment and large clinical experiences during an era of high antenatal steroid use have shown that 40% to 55% of infants born at 29 to 30 weeks' gestation, 20% to 35% of infants born at 27 to 28 weeks' gestation, and 8% to 10% of infants born at or earlier than 26 weeks' gestation do not receive surfactant replacement. Presumably, these infants do not receive surfactant because they have mild or absent respiratory distress syndrome or their conditions have been successfully managed with continuous positive airway pressure.†† Although some infants who are born at earlier than 30 weeks' gestation and exposed to steroids antenatally do not receive surfactant, it is not known whether morbidity may have been reduced if surfactant had been given prophylactically.30,32,33 

An important additional benefit of antenatal steroids is a reduction in risk of intraventricular hemorrhage (RR: 0.60; 95% CI: 0.43–0.83; NNT: 10),115  an advantage not found with surfactant replacement alone.114118,121,122  Antenatal steroids provide no consistent benefit for other complications such as necrotizing enterocolitis, patent ductus arteriosus, infection, or, of particular significance, bronchopulmonary dysplasia in preterm infants born at less than 30 weeks' gestation.113116 

Improvements in surfactant formulations and other intervention strategies to minimize the risk of bronchopulmonary dysplasia may improve neurologic, behavioral, pulmonary, and developmental outcomes in preterm infants.‡‡ Because initiation of mechanical ventilation is a major risk factor for chronic lung disease in observational studies, some experts have raised concern about intubation and using positive pressure in infants for the sole purpose of administering surfactant.143,144  Likewise, preliminary success with a strategy of early continuous positive airway pressure with or without rescue surfactant administration in observational, historical control, and small randomized trials has influenced some clinicians to substitute an early rescue strategy for a surfactant prophylaxis strategy for infants of less than 30 weeks' gestation.19,31,128142 

In preterm infants of more than 27 weeks' gestation, observational studies have suggested that early continuous positive airway pressure to prevent or treat respiratory distress syndrome without mechanical ventilation may reduce the incidence of bronchopulmonary dysplasia.136,143,144  In contrast, a multicenter, randomized, controlled trial that compared prophylactic to rescue continuous positive airway pressure revealed no difference in surfactant use, mechanical ventilation, bronchopulmonary dysplasia, air leaks, or other complications of preterm birth.140 

In preterm infants of less than 28 weeks' gestation or with birth weights of less than 1000 g, the need for mechanical ventilation has been reported to range between 40% and 90% in uncontrolled studies of continuous positive airway pressure.133,134,137,141  In large cohorts of extremely preterm infants, 80% received mechanical ventilation and 70% received exogenous surfactant.19,31  A small trial of 104 infants who were born at or earlier than 27 weeks' gestation and randomly assigned to stabilization with or without continuous end-distending pressure in the delivery room revealed that nearly 80% of these infants received mechanical ventilation, mostly because of respiratory distress within the first hours after birth.138  The rates of surfactant administration and complications associated with extreme prematurity were not reported. Thus, until results from large randomized trials are reported, it is unclear whether the use of early end-distending pressure will safely reduce the need for surfactant administration and incidence of complications of extreme prematurity (eg, bronchopulmonary dysplasia).

Surfactant administration, coupled with continuous positive airway pressure, for preterm infants with respiratory distress syndrome has been evaluated in small, randomized trials.130132,142  In these trials, infants were randomly assigned to groups for surfactant versus control,130  early versus late surfactant,131  or surfactant followed by continuous positive airway pressure versus surfactant and mechanical ventilation.132  Continuous positive airway pressure plus surfactant was associated with a reduction in mechanical ventilation compared with the control groups. This suggested that continuous positive airway pressure, combined with surfactant after a brief intubation early in the course of respiratory distress syndrome, had short-term benefit. However, these studies were not powered to assess mortality, the frequency of complications of preterm birth, duration of hospital stay, or the combined outcome of bronchopulmonary dysplasia or mortality.

See Tables 24 for class and level of evidence.

  1. Surfactant replacement, given as prophylaxis or rescue treatment, reduces the incidence and severity of respiratory distress syndrome, air leaks, and mortality in preterm infants with surfactant deficiency.

    • Prophylactic surfactant administration to infants of less than 30 weeks' gestation with a low rate of exposure to antenatal steroids reduces mortality, the frequency and severity of respiratory distress syndrome, air leaks, and the combined outcome of bronchopulmonary dysplasia and death compared with infants who receive placebo or rescue surfactant.

    • Early rescue surfactant (<2 hours from birth) given to infants of less than 30 weeks' gestation with a low rate of exposure to antenatal steroids reduces the frequency of adverse respiratory outcomes compared with later rescue surfactant.

  2. Both animal-derived and synthetic surfactants decrease respiratory morbidity and mortality in preterm infants with surfactant deficiency.

  3. New synthetic surfactants with surfactant protein–like activity are promising new treatments for surfactant-deficiency disorders.

  4. The various surfactant doses, dosing volumes, interdose intervals, and techniques for administering exogenous surfactant used in protocols for clinical trials have improved clinical outcomes.

  5. The incidence of bronchopulmonary dysplasia in infants who are born less than 30 weeks' gestation and have received surfactant is not changed when compared with controls; however, the incidence is lower in treated infants born at or later than 30 weeks' gestation compared with untreated infants of the same gestational age.

  6. Surfactant replacement has not been shown to affect the incidence of neurologic, developmental, behavioral, medical, or educational outcomes in preterm infants.

  7. Surfactant treatment improves oxygenation and reduces the need for extracorporeal membrane oxygenation without an increase in morbidity in neonates with meconium aspiration syndrome and sepsis/pneumonia. Surfactant treatment may also reduce morbidity and mortality for infants with pulmonary hemorrhage.

  8. Preterm infants at risk of surfactant deficiency benefit from antenatal steroid exposure.

    • Antenatal steroids decrease mortality, the severity of respiratory distress syndrome, surfactant use, and intraventricular hemorrhage in infants born at less than 34 weeks' gestation and decrease the incidence of respiratory distress syndrome in infants born at between 28 and 34 weeks' gestation.

    • Antenatal steroids and postnatal surfactant replacement independently and additively reduce mortality, the severity of respiratory distress syndrome, and air leaks in preterm infants.

    • Antenatal steroids may reduce the need for prophylactic and early rescue surfactant replacement in infants born after 27 to 28 weeks' gestation, although this has not been proven in large, randomized clinical trials.

  9. Continuous positive airway pressure, with or without exogenous surfactant, may reduce the need for additional surfactant and incidence of bronchopulmonary dysplasia without increased morbidity, although this has not been proven in large, randomized clinical trials.

  1. Surfactant should be given to infants with respiratory distress syndrome as soon as possible after intubation irrespective of exposure to antenatal steroids or gestational age.

  2. Prophylactic surfactant replacement should be considered for extremely preterm infants at high risk of respiratory distress syndrome, especially infants who have not been exposed to antenatal steroids.

  3. Rescue surfactant may be considered for infants with hypoxic respiratory failure attributable to secondary surfactant deficiency (eg, meconium aspiration syndrome, sepsis/pneumonia, and pulmonary hemorrhage).

  4. Preterm and term neonates who are receiving surfactant should be managed by nursery and transport personnel with the technical and clinical expertise to administer surfactant safely and deal with multisystem illness.

  1. Randomized trials of continuous positive airway pressure, with or without surfactant, during a brief intubation compared with prophylactic or early surfactant replacement in preterm infants are needed.

  2. Improved surfactant preparations, surfactant-dosing strategies for infants born to mothers who are receiving antenatal steroids, and noninvasive techniques for surfactant administration need additional study.

  3. Surfactant replacement for illnesses other than respiratory distress syndrome needs additional study.

  4. It is no longer necessary to include first-generation synthetic surfactants in future studies.

Ann R. Stark, MD, Chairperson

David H. Adamkin, MD

Daniel G. Batton, MD

Edward F. Bell, MD

Vinod K. Bhutani, MD

Susan E. Denson, MD

Gilbert I. Martin, MD

Kristi L. Watterberg, MD

William A. Engle, MD

Keith J. Barrington, MD

Canadian Paediatric Society

Gary D.V. Hankins, MD

American College of Obstetrics and Gynecology

Tonse N.K. Raju, MD

National Institutes of Health fs

Kay M. Tomashek, MD

Centers for Disease Control and Prevention

Carol Wallman, MSN

National Association of Neonatal Nurses and Association of Women's Health, Obstetric and Neonatal Nurses

Roger F. Soll, MD

Jim Couto, MA

TABLE 1

Meta-analyses of Surfactant Replacement: Prophylaxis and Rescue Treatment With Animal-Derived and Synthetic Surfactant

OutcomeProphylaxis, Typical RR (95% CI)
Rescue, Typical RR (95% CI)
Animal Derived3 Synthetic2 Animal Derived13 Synthetic4 
Incidence and severity of respiratory distress syndrome Decreased Inconsistent response Not available Decreased 
Mortality 0.60 (0.44–0.83) 0.70 (0.58–0.85) 0.67 (0.58–0.76) 0.73 (0.61–0.88) 
Pneumothorax 0.35 (0.26–0.49) 0.67 (0.50–0.90) 0.37 (0.25–0.50) 0.64 (0.55–0.76) 
Pulmonary interstitial emphysema 0.46 (0.35–0.60) 0.68 (0.50–0.93) Not available 0.62 (0.54–0.71) 
Bronchopulmonary dysplasia or death 0.84 (0.75–0.93) 0.89 (0.77–1.03) Not available 0.73 (0.65–0.83) 
OutcomeProphylaxis, Typical RR (95% CI)
Rescue, Typical RR (95% CI)
Animal Derived3 Synthetic2 Animal Derived13 Synthetic4 
Incidence and severity of respiratory distress syndrome Decreased Inconsistent response Not available Decreased 
Mortality 0.60 (0.44–0.83) 0.70 (0.58–0.85) 0.67 (0.58–0.76) 0.73 (0.61–0.88) 
Pneumothorax 0.35 (0.26–0.49) 0.67 (0.50–0.90) 0.37 (0.25–0.50) 0.64 (0.55–0.76) 
Pulmonary interstitial emphysema 0.46 (0.35–0.60) 0.68 (0.50–0.93) Not available 0.62 (0.54–0.71) 
Bronchopulmonary dysplasia or death 0.84 (0.75–0.93) 0.89 (0.77–1.03) Not available 0.73 (0.65–0.83) 
TABLE 2

Surfactant-Replacement Therapy for Respiratory Distress in Preterm and Term Neonates: Summary of Science, Class of Evidence, and Evidence Levels of Key References

Summary of ScienceClass of EvidenceEvidence Level
12345678
1.Surfactant replacement given as prophylaxis or rescue treatment reduces the incidence and severity of respiratory distress syndrome, air leaks, and mortality in preterm infants with surfactant deficiency. Meta-analysis:24, 13, 20, 25, 34 ; RCT:59, 11, 14  10, 12        
1a.Prophylactic surfactant administration to infants of <30 weeks' gestation with a low rate of exposure to antenatal steroids reduces mortality, the frequency and severity of respiratory distress syndrome, air leaks, and the combined outcome of bronchopulmonary dysplasia and death compared with infants who receive placebo or rescue surfactant. Meta-analysis:2, 3, 13, 26 ; RCT:57, 10         
1b.Early rescue surfactant (<2 hours from birth) given to infants of <30 weeks' gestation with a low rate of exposure to antenatal steroids reduces the frequency of adverse respiratory outcomes compared with later rescue surfactant. Meta-analysis:34 ; RCT:35         
2.Both animal-derived and synthetic surfactants improve respiratory morbidity and mortality rates in preterm infants with surfactant deficiency. Meta-analysis:24, 13 ; RCT:5, 712, 14, 16         
3.New synthetic surfactants with surfactant protein-like activity are promising new treatments for surfactant-deficiency disorders. IIa  RCT:39, 40        
4.The various surfactant doses, dosing volumes, interdose intervals, and techniques for administering exogenous surfactant used in protocols for clinical trials have improved clinical outcomes. RCT:7, 8, 14, 37, 3940, 5657, 61      60    
5.The incidence of bronchopulmonary dysplasia in infants of <30 weeks' gestation who have received surfactant is not changed when compared with controls; however, the incidence is lower in treated infants born at ≥30 weeks' gestation. IIa Meta-analysis:3  8, 9        
6.Surfactant replacement has not been shown to affect the incidence of neurologic, developmental, behavioral, medical, or educational outcomes in preterm infants. The net result is an absolute but proportionate increase in the number of infants with and without disabilities. IIa Meta-analysis:110  9295, 97100   109  91, 96, 111     
7.Surfactant treatment improves oxygenation and reduces the need for extracorporeal membrane oxygenation without an increase in morbidity in neonates with meconium aspiration syndrome and sepsis/pneumonia. Surfactant treatment may also reduce morbidity and mortality for infants with pulmonary hemorrhage. IIb Meta-analysis:67, 77  68, 69    7073, 76, 7580, 86, 87   77   
8.Preterm infants at risk of surfactant deficiency benefit from antenatal steroid exposure.          
8a.Antenatal steroids decrease mortality, the severity of respiratory distress syndrome, surfactant use, and intraventricular hemorrhage in infants of <34 weeks' gestation and decrease the incidence of respiratory distress syndrome in infants of between 28 and 34 weeks' gestation. Meta-analysis:115  114, 116, 119, 120, 122    18   113, 114, 117   
8b.Antenatal steroids and postnatal surfactant replacement independently and additively reduce mortality, the severity of respiratory distress syndrome, and air leaks in preterm infants. IIa 116  117    118   19, 113, 121   
8c.Antenatal steroids may reduce the need for prophylactic and early rescue surfactant replacement in infants born after 27–28 weeks' gestation, although this has not been proven in large RCTs. IIa  35, 36      19, 31   
9.Continuous positive airway pressure, with or without exogenous surfactant, may reduce the need for additional surfactant and incidence of bronchopulmonary dysplasia without increased morbidity, although this has not been proven in large RCTs. IIb RCT:140  (failed to support hypothesis) 130132, 138   134, 135  133, 136, 137     
Summary of ScienceClass of EvidenceEvidence Level
12345678
1.Surfactant replacement given as prophylaxis or rescue treatment reduces the incidence and severity of respiratory distress syndrome, air leaks, and mortality in preterm infants with surfactant deficiency. Meta-analysis:24, 13, 20, 25, 34 ; RCT:59, 11, 14  10, 12        
1a.Prophylactic surfactant administration to infants of <30 weeks' gestation with a low rate of exposure to antenatal steroids reduces mortality, the frequency and severity of respiratory distress syndrome, air leaks, and the combined outcome of bronchopulmonary dysplasia and death compared with infants who receive placebo or rescue surfactant. Meta-analysis:2, 3, 13, 26 ; RCT:57, 10         
1b.Early rescue surfactant (<2 hours from birth) given to infants of <30 weeks' gestation with a low rate of exposure to antenatal steroids reduces the frequency of adverse respiratory outcomes compared with later rescue surfactant. Meta-analysis:34 ; RCT:35         
2.Both animal-derived and synthetic surfactants improve respiratory morbidity and mortality rates in preterm infants with surfactant deficiency. Meta-analysis:24, 13 ; RCT:5, 712, 14, 16         
3.New synthetic surfactants with surfactant protein-like activity are promising new treatments for surfactant-deficiency disorders. IIa  RCT:39, 40        
4.The various surfactant doses, dosing volumes, interdose intervals, and techniques for administering exogenous surfactant used in protocols for clinical trials have improved clinical outcomes. RCT:7, 8, 14, 37, 3940, 5657, 61      60    
5.The incidence of bronchopulmonary dysplasia in infants of <30 weeks' gestation who have received surfactant is not changed when compared with controls; however, the incidence is lower in treated infants born at ≥30 weeks' gestation. IIa Meta-analysis:3  8, 9        
6.Surfactant replacement has not been shown to affect the incidence of neurologic, developmental, behavioral, medical, or educational outcomes in preterm infants. The net result is an absolute but proportionate increase in the number of infants with and without disabilities. IIa Meta-analysis:110  9295, 97100   109  91, 96, 111     
7.Surfactant treatment improves oxygenation and reduces the need for extracorporeal membrane oxygenation without an increase in morbidity in neonates with meconium aspiration syndrome and sepsis/pneumonia. Surfactant treatment may also reduce morbidity and mortality for infants with pulmonary hemorrhage. IIb Meta-analysis:67, 77  68, 69    7073, 76, 7580, 86, 87   77   
8.Preterm infants at risk of surfactant deficiency benefit from antenatal steroid exposure.          
8a.Antenatal steroids decrease mortality, the severity of respiratory distress syndrome, surfactant use, and intraventricular hemorrhage in infants of <34 weeks' gestation and decrease the incidence of respiratory distress syndrome in infants of between 28 and 34 weeks' gestation. Meta-analysis:115  114, 116, 119, 120, 122    18   113, 114, 117   
8b.Antenatal steroids and postnatal surfactant replacement independently and additively reduce mortality, the severity of respiratory distress syndrome, and air leaks in preterm infants. IIa 116  117    118   19, 113, 121   
8c.Antenatal steroids may reduce the need for prophylactic and early rescue surfactant replacement in infants born after 27–28 weeks' gestation, although this has not been proven in large RCTs. IIa  35, 36      19, 31   
9.Continuous positive airway pressure, with or without exogenous surfactant, may reduce the need for additional surfactant and incidence of bronchopulmonary dysplasia without increased morbidity, although this has not been proven in large RCTs. IIb RCT:140  (failed to support hypothesis) 130132, 138   134, 135  133, 136, 137     

RCT indicates randomized, controlled trial.

Modified from “Levels of Evidence” and “Class of Recommendation” (American Heart Association. International Liaison Committee on Resuscitation Worksheet Templates).152 

TABLE 3

Definitions of Levels of Evidence

Level of EvidenceDefinitions
Randomized clinical trials or meta-analyses of multiple clinical trials with substantial treatment effects 
Randomized clinical trials with smaller or less significant treatment effects 
Prospective, controlled, nonrandomized, cohort studies 
Historic, nonrandomized, cohort or case-control studies 
Case series: patients compiled in serial fashion, lacking a control group 
Animal studies or mechanical model studies 
Extrapolations from existing data collected for other purposes, theoretic analyses 
Rational conjecture (common sense); common practices accepted before evidence-based guidelines 
Level of EvidenceDefinitions
Randomized clinical trials or meta-analyses of multiple clinical trials with substantial treatment effects 
Randomized clinical trials with smaller or less significant treatment effects 
Prospective, controlled, nonrandomized, cohort studies 
Historic, nonrandomized, cohort or case-control studies 
Case series: patients compiled in serial fashion, lacking a control group 
Animal studies or mechanical model studies 
Extrapolations from existing data collected for other purposes, theoretic analyses 
Rational conjecture (common sense); common practices accepted before evidence-based guidelines 
TABLE 4

Definitions of Class and Required Level of Evidence

ClassClinical DefinitionRequired Level of Evidence
I. Definitely recommended; definitive, excellent evidence provides support Always acceptable, safe One or more level 1 studies are present (with rare exceptions) 
Definitely useful 
Proven in both efficacy and effectiveness Study results consistently positive and compelling 
Must be used in the intended manner for proper clinical indications  
II. Acceptable and useful Safe, acceptable Most evidence is positive 
Clinically useful Level 1 studies are absent, inconsistent, or lack power 
Not yet confirmed definitively No evidence of harm 
IIa. Acceptable and useful with good evidence Safe, acceptable Generally higher levels of evidence 
Clinically useful Results are consistently positive 
Considered to be treatments of choice  
IIb. Acceptable and useful with fair evidence Safe, acceptable Generally lower or intermediate levels of evidence 
Clinically useful Generally, but not consistently, positive results 
 Considered to be optional or alternative treatments  
III. Not acceptable, not useful, may be harmful Unacceptable No positive high-level data 
Not useful clinically Some studies suggest or confirm harm 
May be harmful  
Indeterminate Research just getting started Minimal evidence is available 
Continuing area of research Higher studies in progress 
No recommendations until further research Results inconsistent, contradictory 
 Results not compelling 
ClassClinical DefinitionRequired Level of Evidence
I. Definitely recommended; definitive, excellent evidence provides support Always acceptable, safe One or more level 1 studies are present (with rare exceptions) 
Definitely useful 
Proven in both efficacy and effectiveness Study results consistently positive and compelling 
Must be used in the intended manner for proper clinical indications  
II. Acceptable and useful Safe, acceptable Most evidence is positive 
Clinically useful Level 1 studies are absent, inconsistent, or lack power 
Not yet confirmed definitively No evidence of harm 
IIa. Acceptable and useful with good evidence Safe, acceptable Generally higher levels of evidence 
Clinically useful Results are consistently positive 
Considered to be treatments of choice  
IIb. Acceptable and useful with fair evidence Safe, acceptable Generally lower or intermediate levels of evidence 
Clinically useful Generally, but not consistently, positive results 
 Considered to be optional or alternative treatments  
III. Not acceptable, not useful, may be harmful Unacceptable No positive high-level data 
Not useful clinically Some studies suggest or confirm harm 
May be harmful  
Indeterminate Research just getting started Minimal evidence is available 
Continuing area of research Higher studies in progress 
No recommendations until further research Results inconsistent, contradictory 
 Results not compelling 
APPENDIX

APPENDIX Death and Bronchopulmonary Dysplasia in Larger Preterm Infants

SurfactantControl
Death   
    Liechty et al,8 n/N 1/110 6/112 
    Long et al,9 n/N 26/614 42/623 
    Total, n/N (%) 27/724 (3.4) 49/735 (6.7) 
    RR (95% CI) 0.56 (0.35–0.88)  
    Risk difference 0.03  
    NNT 33  
    RR reduction 0.44  
    Test for heterogeneity   
        χ2 1.38 
        df 
        P .24 
        I2, % 27.8 
Bronchopulmonary dysplasia   
    Liechty et al,8 n/N 24/104 35/98 
    Long et al,9 n/N 16/614 37/623 
    Total, n/N (%) 42/718 (5.8) 72/721 (10.0) 
    RR (95% CI) 0.57 (0.40–0.81)  
    Risk difference 0.04  
    NNT 25  
    RR reduction 0.43  
    Test for heterogeneity   
        χ2 0.57 
        df 
        P .45 
        I2, % 
SurfactantControl
Death   
    Liechty et al,8 n/N 1/110 6/112 
    Long et al,9 n/N 26/614 42/623 
    Total, n/N (%) 27/724 (3.4) 49/735 (6.7) 
    RR (95% CI) 0.56 (0.35–0.88)  
    Risk difference 0.03  
    NNT 33  
    RR reduction 0.44  
    Test for heterogeneity   
        χ2 1.38 
        df 
        P .24 
        I2, % 27.8 
Bronchopulmonary dysplasia   
    Liechty et al,8 n/N 24/104 35/98 
    Long et al,9 n/N 16/614 37/623 
    Total, n/N (%) 42/718 (5.8) 72/721 (10.0) 
    RR (95% CI) 0.57 (0.40–0.81)  
    Risk difference 0.04  
    NNT 25  
    RR reduction 0.43  
    Test for heterogeneity   
        χ2 0.57 
        df 
        P .45 
        I2, % 

Tables were generated by using RevMan 4.2 software (available from the Cochrane Review Web site156 ).

All clinical reports from the American Academy of Pediatrics automatically expire 5 years after publication unless reaffirmed, revised, or retired at or before that time.

The guidance in this report does not indicate an exclusive course of treatment or serve as a standard of medical care. Variations, taking into account individual circumstances, may be appropriate.

*

Refs 90, 93, 94, 101103, 106, 107, and 111.

Refs 511, 20, 2224, 27, 30, 39, 40, and 42.

Refs 24, 10, 13, 20, 2225, 27, 28, 30, 39, 40, 42, and 65.

§

Refs 57, 10, 11, 13, 20, 22, 2428, 34, and 35.

Refs 3740, 43, 44, 4648, 58, and 148.

Refs 7, 8, 10, 11, 14, 22, 28, 38, 43, and 4648.

#

Refs 88, 89, 92, 93, 95, 98, 100105, and 107110.

**

Refs 88, 89, 92, 93, 95, 98, 100103, 109, 135, 136, and 140142.

††

Refs 15, 18, 19, 2224, 2831, and 128140.

‡‡

Refs 29, 34, 79, 91, 96, 100106, and 140.

1
American Academy of Pediatrics, Committee on Fetus and Newborn. Surfactant replacement therapy for respiratory distress syndrome.
Pediatrics.
1999
;
103
(3):
684
–685
2
Soll RF. Prophylactic synthetic surfactant for preventing morbidity and mortality in preterm infants.
Cochrane Database Syst Rev.
2000
;
2
:
CD001079
3
Soll RF. Prophylactic natural surfactant extract for preventing morbidity and mortality in preterm infants.
Cochrane Database Syst Rev.
2000
;
2
:
CD000511
4
Soll RF. Synthetic surfactant for respiratory distress syndrome in preterm infants.
Cochrane Database Syst Rev.
2000
;
2
:
CD001149
5
Corbet A, Bucciarelli R, Goldman S, Mammel M, Wold D, Long W. Decreased mortality rate among small premature infants treated at birth with a single dose of synthetic surfactant: a multicenter controlled trial. American Exosurf Pediatric Study Group I.
J Pediatr.
1991
;
118
(2):
277
–284
6
Enhorning G, Shennan A, Possmayer F, Dunn M, Chen CP, Milligan J. Prevention of neonatal respiratory distress syndrome by tracheal instillation of surfactant: a randomized clinical trial.
Pediatrics.
1985
;
76
(2):
145
–153
7
Hoekstra RE, Jackson JC, Myers TF, et al. Improved neonatal survival following multiple doses of bovine surfactant in very premature neonates at risk for respiratory distress syndrome.
Pediatrics.
1991
;
88
(1):
10
–18
8
Liechty EA, Donovan E, Purohit D, et al. Reduction of neonatal mortality after multiple doses of bovine surfactant in low birth weight neonates with respiratory distress syndrome.
Pediatrics.
1991
;
88
(1):
19
–28
9
Long W, Corbet A, Cotton R, et al. A controlled trial of synthetic surfactant in infants weighing 1250 g or more with respiratory distress syndrome. The American Exosurf Neonatal Study Group I and the Canadian Exosurf Neonatal Study Group.
N Engl J Med.
1991
;
325
(24):
1696
–1703
10
Shapiro DL, Notter RH, Morin FC III, et al. Double-blind randomized trial of a calf lung surfactant extract administered at birth to very premature infants for prevention of respiratory distress syndrome. Ross Collaborative Surfactant Prevention Study Group.
Pediatrics.
1985
;
76
(4):
593
–599
11
Soll RF, Hoekstra RE, Fangman JJ, et al. Multicenter trial of single-dose modified bovine surfactant extract (Survanta) for prevention of respiratory distress syndrome.
Pediatrics.
1990
;
85
(6):
1092
–1102
12
Lang MJ, Hall RT, Reddy NS, Kurth CG, Merritt TA. A controlled trial of human surfactant replacement therapy for severe respiratory distress syndrome in very low birth weight infants.
J Pediatr.
1990
;
116
(6):
295
–300
13
Kresch MJ, Clive JM. Meta-analyses of surfactant replacement therapy of infants with birth weights less than 2000 grams.
J Perinatol.
1998
;
18
(4):
276
–283
14
Collaborative European Multicenter Study Group. Surfactant replacement therapy for severe neonatal respiratory distress syndrome: an international randomized clinical trial.
Pediatrics.
1988
;
82
(5):
683
–691
15
Horbar JD, Wright EC, Onstad L. Decreasing mortality associated with the introduction of surfactant therapy: an observational study of neonates weighing 601 to 1300 grams at birth. The Members of the National Institute of Child Health and Human Development Neonatal Research Network.
Pediatrics.
1993
;
92
(5):
191
–196
16
Ten Centre Study Group. Ten centre trial of artificial surfactant (artificial lung expanding compound) in very premature babies.
Br Med J (Clin Res Ed).
1987
;
294
(6578):
991
–996
17
Schwartz RM, Luby AM, Scanlon JW, Kellogg RJ. Effect of surfactant on morbidity, mortality, and resource use in newborn infants weighing 500 to 1500 g.
N Engl J Med.
1994
;
330
(21):
1476
–1480
18
Horbar JD, Badger GJ, Carpenter JH, et al. Trends in mortality and morbidity for very low birth weight infants, 1991–1999.
Pediatrics.
2002
;
110
(1 pt 1):
143
–151
19
St John EB, Carlo WA. Respiratory distress syndrome in VLBW infants: changes in management and outcomes observed by the NICHD Neonatal Research Network.
Semin Perinatol.
2003
;
27
(4):
288
–292
20
Morley CJ. Systematic review of prophylactic vs rescue surfactant.
Arch Dis Child Fetal Neonatal Ed.
1997
;
77
(1):
F70
–F74
21
Kwong MS, Egan EA, Notter RH, Shapiro DL. Double-blind clinical trial of calf lung surfactant extract for the prevention of hyaline membrane disease in extremely premature infants.
Pediatrics.
1985
;
76
(4):
585
–592
22
Kattwinkel J, Bloom BT, Delmore P. Prophylactic administration of calf lung surfactant extract is more effective than early treatment of respiratory distress syndrome in neonates of 29 through 32 weeks' gestation.
Pediatrics.
1993
;
92
(1):
90
–98
23
Kendig JW, Notter RH, Cox C, et al. A comparison of surfactant as immediate prophylaxis and as rescue therapy in newborns of less than 30 weeks' gestation.
N Engl J Med.
1991
;
324
(13):
865
–871
24
Merritt TA, Hallman M, Berry C, et al. Randomized, placebo-controlled trial of human surfactant given at birth versus rescue administration in very low birth weight infants with lung immaturity.
J Pediatr.
1991
;
118
(4 pt 1):
581
–594
25
Egberts J, Brand R, Walti H, Bevilacqua G, Bréart G, Gardini F. Mortality, severe respiratory distress syndrome, and chronic lung disease of the newborn are reduced more after prophylactic than after therapeutic administration of the surfactant Curosurf.
Pediatrics.
1997
;
100
(1). Available at: www.pediatrics.org/cgi/content/full/100/1/e4
26
Soll RF, Morley CJ. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants.
Cochrane Database Syst Rev.
2001
;
2
:
CD000510
27
Egberts J, de Winter JP, Sedin G, et al. Comparison of prophylaxis and rescue treatment with Curosurf in neonates less than 30 weeks' gestation: a randomized trial.
Pediatrics.
1993
;
92
(6):
768
–774
28
Bevilacqua G, Parmigiani S, Robertson B. Prophylaxis of respiratory distress syndrome by treatment with modified porcine surfactant at birth: a multicentre prospective randomized trial.
J Perinat Med.
1996
;
24
(6):
609
–620
29
Dunn MS, Shennan AT, Zayack D, Possmayer F. Bovine surfactant replacement therapy in neonates of less than 30 weeks' gestation: a randomized controlled trial of prophylaxis versus treatment.
Pediatrics.
1991
;
87
(3):
377
–386
30
Walti H, Paris-Llado J, Bréart G, Couchard M. Porcine surfactant replacement therapy in newborns of 25–31 weeks' gestation: a randomized, multicentre trial of prophylaxis versus rescue with multiple low doses. The French Collaborative Multicentre Study Group.
Acta Paediatr.
1995
;
84
(8):
913
–921
31
Horbar JD, Carpenter JH, Buzas J, et al. Timing of initial surfactant treatment for infants 23 to 29 weeks' gestation: is routine practice evidence based?
Pediatrics.
2004
;
113
(3):
1593
–1602
32
Horbar JD, Carpenter JH, Buzas J, et al. Collaborative quality improvement to provide evidence based surfactant for preterm infants: a cluster randomized trial.
BMJ.
2004
;
329
(7473):
1004
33
Walti H, Paris-Llado J, Egberts J, et al. Prophylactic administration of porcine-derived lung surfactant is a significant factor in reducing the odds for peri-intraventricular haemorrhage in premature infants.
Biol Neonate.
2002
;
81
(3):
182
–187
34
Yost CC, Soll RF. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome.
Cochrane Database Syst Rev.
2000
;
2
:
CD001456
35
Gortner L, Wauer RR, Hammer H, et al. Early versus late surfactant treatment in preterm infants of 27 to 32 weeks' gestational age: a multicenter controlled clinical trial.
Pediatrics.
1998
;
102
(5):
1153
–1160
36
Escobedo MB, Gunkel JH, Kennedy KA, et al. Early surfactant for neonates with mild to moderate respiratory distress syndrome: a multicenter, randomized trial.
J Pediatr.
2004
;
144
(6):
804
–808
37
Vermont-Oxford Neonatal Network. A multicenter, randomized trial comparing synthetic surfactant with modified bovine surfactant extract in the treatment of neonatal respiratory distress syndrome.
Pediatrics.
1996
;
97
(1):
1
–6
38
Ainsworth SB, Beresford MW, Milligan DWA. Pumactant and poractant alfa for treatment of respiratory distress syndrome in neonates born at 25–29 weeks' gestation: a randomized trial.
Lancet.
2000
;
355
(9213):
1387
–1392
39
Sinha S, Lacaze-Masmoneil T, Valis i Soler A, et al. A randomized, controlled trial of lucinactant versus poractant alfa in very premature infants at high risk for respiratory distress syndrome.
Pediatrics.
2005
;
115
(4):
1030
–1038
40
Moya F, Gadzinowski J, Bancalari E, et al. A multicenter, randomized, masked, comparison trial of lucinactant, colfosceril palmitate, and beractant for the prevention of respiratory distress syndrome in very preterm infants.
Pediatrics.
2005
;
115
(4):
1018
–1029
41
Kattwinkel J. Synthetic surfactants: the search goes on.
Pediatrics.
2005
;
115
(4):
1075
–1076
42
Ramanathan R, Rasmussen MR, Gerstmann DR, Finer N, Sekar K. A randomized, multicenter masked comparison trial of poractant alfa (Curosurf) versus beractant (Survanta) in the treatment of respiratory distress syndrome in preterm infants.
Am J Perinatol.
2004
;
21
(3):
109
–119
43
Clark RH, Auten RL, Peabody J. A comparison of the outcomes of neonates treated with two different natural surfactants.
J Pediatr.
2001
;
139
(6):
828
–831
44
Soll RF, Blanco F. Natural surfactant extract versus synthetic surfactant for neonatal respiratory distress syndrome.
Cochrane Database Syst Rev.
2000
;
2
:
CD000144
45
Halliday HL. History of surfactant from 1980.
Biol Neonate.
2005
;
87
(4):
317
–322
46
Hudak ML, Martin DJ, Egan EA, et al. A multicenter randomized masked comparison trial of synthetic surfactant versus calf lung surfactant extract in the prevention of neonatal respiratory distress syndrome.
Pediatrics.
1997
;
100
(1):
39
–50
47
Horbar JD, Wright LL, Soll RF, et al. A multicenter randomized trial comparing two surfactants for the treatment of neonatal respiratory distress syndrome. National Institute of Child Health and Human Development Neonatal Research Network.
J Pediatr.
1993
;
123
(5):
757
–766
48
Bloom BT, Kattwinkel J, Hall RT, et al. Comparison of Infasurf (calf lung surfactant extract) to Survanta (Beractant) in the treatment and prevention of respiratory distress syndrome.
Pediatrics.
1997
;
100
(1):
31
–38
49
Cochrane CG, Revak SD, Merritt TA, et al. The efficacy and safety of KL4-surfactant in preterm infants with respiratory distress syndrome.
Am J Respir Crit Care Med.
1996
;
153
(1):
404
–410
50
Davis AJ, Jobe AH, Hafner D, Ikegami M. Lung function in premature lambs and rabbits treated with a recombinant SP-C surfactant.
Am J Respir Crit Care Med.
1998
;
157
(2):
553
–559
51
Pfister RH, Soll RF. New synthetic surfactants: the next generation?
Biol Neonate.
2005
;
87
(4):
338
–344
52
Chida S, Phelps DS, Soll RF, Taeusch HW. Surfactant proteins and anti-surfactant antibodies in sera from infants with respiratory distress syndrome with and without surfactant treatment.
Pediatrics.
1991
;
88
(1):
84
–89
53
Whitsett JA, Hull WM, Luse S. Failure to detect surfactant protein-specific antibodies in sera of premature infants treated with Survanta, a modified bovine surfactant.
Pediatrics.
1991
;
87
(1):
505
–510
54
Moya F, Sinha S, Gadzinowski J, et al. One-year follow-up of very preterm infants who received lucinactant for prevention of respiratory distress syndrome: results from 2 multicenter randomized, controlled trials [published correction appears in Pediatrics. 2007;120(4):935].
Pediatrics.
2007
;
119
(6). Available at: www.pediatrics.org/cgi/content/full/119/6/e1361
55
Dunn MS, Shennan AT, Possmayer F. Single- versus multiple-dose surfactant replacement therapy in neonates of 30 to 36 weeks' gestation with respiratory distress syndrome.
Pediatrics.
1990
;
86
(4):
564
–571
56
Konishi M, Fujiwara T, Naito T, et al. Surfactant replacement therapy in neonatal respiratory distress syndrome: a multi-centre, randomized clinical trial—comparison of high-versus low-dose of surfactant TA.
Eur J Pediatr.
1988
;
147
(1):
20
–25
57
Corbet A, Gerdes J, Long W, et al. Double blind, randomized trial of one versus three prophylactic doses of synthetic surfactant in 826 neonates weighing 700 to 1100 grams: effects on mortality rate. American Exosurf Neonatal Study Groups I and IIa.
J Pediatr.
1995
;
126
(6):
969
–978
58
Baroutis G, Kayleyias J, Liarou T, Papathoma E, Hatzistamatiou Z, Costalos C. Comparison of three treatment regimens of natural surfactant preparations in neonatal respiratory distress syndrome.
Eur J Pediatr.
2003
;
162
(7–8):
476
–480
59
Kattwinkel J, Robinson M, Bloom BT, Delmore P, Ferguson JE. Technique for intrapartum administration of surfactant without requirement for endotracheal tube.
J Perinatol.
2004
;
24
(6):
360
–365
60
Ueda T, Ikegami M, Rider ED, Jobe AH. Distribution of surfactant and ventilation in surfactant-treated preterm lambs.
J Appl Physiol.
1994
;
76
(1):
45
–55
61
Zola EM, Gunkel JH, Chan RK, et al. Comparison of three dosing procedures for administration of bovine surfactant to neonates with respiratory distress syndrome.
J Pediatr.
1993
;
122
(3):
453
–459
62
Anzueto A, Baughman RP, Guntupalli KK, et al. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group.
N Engl J Med.
1996
;
334
(22):
1417
–1421
63
Smedsaas-Löfvenberg A, Nilsson K, Moa G, Axelsson I. Nebulization of drugs in a nasal CPAP system.
Acta Paediatr.
1999
;
88
(1):
89
–92
64
Berggren E, Liljedahl M, Winbladh B, et al. Pilot study of nebulized surfactant therapy for neonatal respiratory distress syndrome.
Acta Paediatr.
2000
;
89
(4):
460
–464
65
Kendig JW, Ryan RM, Sinkin RA, et al. Comparison of two strategies for surfactant prophylaxis in very premature infants: a multicenter randomized trial.
Pediatrics.
1998
;
101
(6):
1006
–1012
66
Finer NN. Surfactant use for neonatal lung injury: beyond respiratory distress syndrome.
Paediatr Respir Rev.
2004
;
5
(suppl A):
S289
–S297
67
Soll RF, Dargaville P. Surfactant for meconium aspiration syndrome in full term infants.
Cochrane Database Syst Rev.
2000
;
2
:
CD002054
68
Findlay RD, Taeusch HW, Walther FJ. Surfactant replacement therapy for meconium aspiration syndrome.
Pediatrics.
1996
;
97
(1):
48
–52
69
Lotze A, Mitchell BR, Bulas DI, Zola EM, Shalwitz RA, Gunkel JH. Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in Term Infants Study Group.
J Pediatr.
1998
;
132
(1):
40
–47
70
Khammash H, Perlman M, Wojtulewicz J, Donn M. Surfactant therapy in full-term neonates with severe respiratory failure.
Pediatrics.
1993
;
92
(1):
135
–139
71
Herting E, Gefeller O, Land M, van Sonderen L, Harms K, Robertson B. Surfactant treatment of neonates with respiratory failure and group B streptococcal infection. Members of the Collaborative European Multicenter Study Group.
Pediatrics.
2000
;
106
(5):
957
–964; discussion 1135
72
Wiswell TE, Knight GR, Finer NN, et al. A multicenter, randomized, controlled trial comparing Surfaxin (Lucinactant) lavage with standard care for treatment of meconium aspiration syndrome.
Pediatrics.
2002
;
109
(6):
1081
–1087
73
Auten RL, Notter RH, Kendig JW, Davis JM, Shapiro DL. Surfactant treatment of full-term newborns with respiratory failure.
Pediatrics.
1991
;
87
(1):
101
–107
74
Lotze A, Knight GR, Martin GR, et al. Improved pulmonary outcome after exogenous surfactant therapy for respiratory failure in term infants requiring extracorporeal membrane oxygenation.
J Pediatr.
1993
;
122
(2):
261
–268
75
Chinese Collaborative Study Group for Neonatal Respiratory Distress. Treatment of severe meconium aspiration syndrome with porcine surfactant: a multicenter, randomized, controlled trial.
Acta Paediatr.
2005
;
94
(7):
896
–902
76
Fetter WP, Baerts W, Bos AP, van Lingen RA. Surfactant replacement therapy in neonates with respiratory failure due to bacterial sepsis.
Acta Paediatr.
1995
;
84
(1):
14
–16
77
Hintz SR, Suttner DM, Sheehan AM, Rhine WD, Van Meurs KP. Decreased use of neonatal extracorporeal membrane oxygenation (ECMO): how new treatment modalities have affected ECMO utilization.
Pediatrics.
2000
;
106
(1):
1339
–1343
78
Dargaville PA, Mills JF, Soll RF. Therapeutic lung lavage for meconium aspiration syndrome in newborn infants.
Cochrane Database Syst Rev.
2002
;
1
:
CD003486
79
Pandit PB, Dunn MS, Colucci EA. Surfactant therapy in neonates with respiratory deterioration due to pulmonary hemorrhage.
Pediatrics.
1995
;
95
(1):
32
–36
80
Amizuka T, Shimizu H, Niida Y, Gawa Y. Surfactant therapy in neonates with respiratory failure due to haemorrhagic pulmonary oedema.
Eur J Pediatr.
2003
;
162
(10):
697
–702
81
Auten RL, Merzbach J, Myers G, Goldstein RF, Palumbo D. Neurodevelopmental and health outcomes in term infants treated with surfactant for severe respiratory failure.
J Perinatol.
2000
;
20
(5):
291
–294
82
Cogo PE, Zimmermann LJ, Verlato G, et al. A dual stable isotope tracer method for the measurement of surfactant disaturated-phosphatidylcholine synthesis in infants with congenital diaphragmatic hernia.
Pediatr Res.
2004
;
56
(2):
184
–190
83
Cogo PE, Zimmerman LD, Meneghini L, et al. Pulmonary surfactant disaturated-phosphatidlycholine (DSPC) turnover and pool size in newborn infants with congenital diaphragmatic hernia (CDH).
Pediatr Res.
2003
;
54
(5):
653
–658
84
Van Meurs K; Congenital Diaphragmatic Hernia Study Group. Is surfactant therapy beneficial in the treatment of the term newborn infant with congenital diaphragmatic hernia?
J Pediatr.
2004
;
145
(3):
312
–316
85
Lally KP, Lally PA, Langham MR, et al. Surfactant does not improve survival rate in preterm infants with congenital diaphragmatic hernia.
J Pediatr Surg.
2004
;
39
(6):
829
–833
86
Rivera S, Gaugler C, Langlet C, et al. Secondary surfactant deficiencies in extremely low birth weight premature infants [in French.].
Arch Pediatr.
2004
;
11
(11):
1346
–1350
87
Escande B, Kuhn P, Rivera S, Messer J. Secondary surfactant deficiencies [in French].
Arch Pediatr.
2004
;
11
(11):
1351
–1359
88
Survanta Multidose Study Group. Two-year follow-up of infants treated for neonatal respiratory distress syndrome with bovine surfactant. Survanta Multidose Study Group.
J Pediatr.
1994
;
124
(6):
962
–967
89
Corbet A, Long W, Schumacher R, Gerdes J, Cotton R. Double-blind developmental evaluation at 1-year corrected age of 597 premature infants with birth weights from 500–1350 grams enrolled in three placebo-controlled trials of prophylactic synthetic surfactant. American Exosurf Neonatal Study Group I.
J Pediatr.
1995
;
126
(5 pt 2):
S5
–S12
90
Pelkonen AS, Hakulinen AL, Turpeinen M, Hallman M. Effect of neonatal surfactant therapy on lung function at school age in children born very preterm.
Pediatr Pulmonol.
1998
;
25
(3):
182
–190
91
Greenough A, Alexander J, Burgess S, et al. Home oxygen status and rehospitalisation and primary care requirements of infants with chronic lung disease.
Arch Dis Child.
2002
;
86
(1):
40
–43
92
Dunn MS, Shennan AT, Hoskins EM, Enhorning G. Two-year follow-up of infants enrolled in a randomized trial of surfactant replacement therapy for prevention of neonatal respiratory distress syndrome.
Pediatrics.
1988
;
82
(4):
543
–547
93
Vaucher YE, Merritt TA, Hallman M, Jarvenpaa AL, Telsey AM, Jones BL. Neurodevelopmental and respiratory outcome in early childhood after human surfactant treatment.
Am J Dis Child.
1988
;
142
(9):
927
–930
94
Abbasi S, Bhutani VK, Gerdes JS. Long-term pulmonary consequences of respiratory distress syndrome in preterm infants with exogenous surfactant.
J Pediatr.
1993
;
122
(3):
446
–452
95
Kraybill EN, Bose CL, Corbet AJ, et al. Double-blind evaluation of developmental and health status to age 2 years of infants weighing 700 to 1350 grams treated prophylactically at birth with a single dose of synthetic surfactant or air placebo.
J Pediatr.
1995
;
126(5 pt 2)
:
S33
–S42
96
Gaillard EA, Cooke RWI, Shaw NJ. Improved survival and neurodevelopmental outcome after prolonged ventilation in preterm neonates who have received antenatal steroids and surfactant.
Arch Dis Child Fetal Neonatal Ed.
2001
;
84
(3):
F194
–F196
97
Casiro O, Bingham W, MacMurray B, et al. One-year follow-up of 89 infants with birth weights of 500 to 749 grams and respiratory distress syndrome randomized to two rescue doses of synthetic surfactant or air placebo. Canadian Exosurf Neonatal Follow-up Group.
J Pediatr.
1995
;
126(5 pt 2)
:
S53
–S60
98
Robertson B, Curstedt T, Tubman R, et al. A 2-year follow-up of babies enrolled in a European multicentre trial of porcine surfactant replacement for severe neonatal respiratory distress syndrome. Collaborative European Multicentre Study Group.
Eur J Pediatr.
1992
;
151
(5):
372
–376
99
Couser RJ, Ferrara TB, Wheeler W, et al. Pulmonary follow-up 2.5 years after a randomized, controlled, multiple dose bovine study of preterm newborn infants.
Pediatr Pulmonol.
1993
;
15
(3):
163
–167
100
Hack M, Wilson-Costello D, Friedman H, Taylor GH, Schluchter M, Fanaroff AA. Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g: 1992–1995.
Arch Pediatr Adolesc Med.
2000
;
154
(7):
725
–731
101
Palta M, Sadek-Badawi M, Evans M, Weinstein MR, McGuinness G. Functional assessment of a multicenter very low-birth-weight cohort at age 5 years. Newborn Lung Project.
Arch Pediatr Adolesc Med.
2000
;
154
(1):
23
–30
102
D'Angio CT, Sinkin RA, Stevens TP, et al. Longitudinal, 15-year follow-up of children born at less than 29 weeks' gestation after introduction of surfactant therapy into a region: neurologic, cognitive, and educational outcomes.
Pediatrics.
2002
;
110
(6):
1094
–1102
103
Piecuch RE, Leonard CH, Cooper BA, Sehring SA. Outcome of extremely low birth weight infants (500 to 999 grams) over a 12-year period.
Pediatrics.
1997
;
100
(4):
633
–639
104
Vohr BR, Wright LL, Dusick AM, et al. Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993–1994.
Pediatrics.
2000
;
105
(6):
1216
–1226
105
Stoelhorst GMSJ, Martens SE, Rijken M, et al. Behaviour at 2 years of age in very preterm infants (gestational age <32 weeks).
Acta Paediatr.
2003
;
92
(5):
595
–601
106
Böhm B, Katz-Salamon M. Cognitive development at 5.5 years of children with chronic lung disease of prematurity.
Arch Dis Child Fetal Neonatal Ed.
2003
;
88
(2):
F101
–F105
107
Hoekstra RE, Ferrara TB, Couser RJ, Payne NR, Connett JE. Survival and long-term neurodevelopmental outcome of extremely premature infants born at 23–26 weeks' gestational age at tertiary center.
Pediatrics.
2004
;
113
(1). Available at: www.pediatrics.org/cgi/content/full/113/1/e1
108
Saigal S, Stoskopf BL, Streiner DL, et al. Physical growth and current health status of infants who were of extremely low birth weight and controls at adolescence.
Pediatrics.
2001
;
108
(2):
407
–415
109
Ferrara TB, Hoekstra RE, Couser RJ, Burrows E. Survival and follow-up of infants born at 23 to 26 weeks of gestational age: effects of surfactant therapy.
J Pediatr.
1994
;
124
(1):
119
–124
110
Sinn JK, Ward MC, Henderson-Smart DJ. Developmental outcome of preterm infants after surfactant therapy: systematic review of randomized controlled trials.
J Paediatr Child Health.
2002
;
38
(6):
597
–600
111
Sinkin RA, Kramer BM, Merzback JL, et al. School-age follow-up of a prophylactic versus rescue surfactant trial: pulmonary, neurodevelopmental, and educational outcomes.
Pediatrics.
1998
;
101
(5). Available at: www.pediatrics.org/cgi/content/full/101/5/e11
112
Saigal S, Pinelli J, Hoult L, Kim MM, Boyle M. Psychopathology and social competencies of adolescents who were extremely low birth weight.
Pediatrics.
2003
;
111(5 pt 1)
:
969
–975
113
Jobe AH, Mitchell BR, Gunkel JH. Beneficial effects of the combined use of prenatal corticosteroids and postnatal surfactant on preterm infants.
Am J Obstet Gynecol.
1993
;
168
(2):
508
–513
114
Kari MA, Hallman M, Eronen M, et al. Prenatal dexamethasone treatment in conjunction with rescue therapy of human surfactant: a randomized placebo-controlled multicenter study.
Pediatrics.
1994
;
93
(5):
730
–736
115
Crowley P. Prophylactic corticosteroids for preterm birth.
Cochrane Database Syst Rev.
2000
;
(2):
CD000065
116
National Institutes of Health. Effect of corticosteroids for fetal maturation on perinatal outcomes.
NIH Consens Statement.
1994
;
12
(2):
1
–24
117
Wright LL, Horbar JD, Gunkel H, et al. Evidence from multicenter networks on the current use and effectiveness of antenatal corticosteroids in low birth weight infants.
Am J Obstet Gynecol.
1995
;
173
(1):
263
–269
118
Chien LY, Ohlsson A, Seshia MM, et al. Variations in antenatal corticosteroid therapy: a persistent problem despite 30 years of evidence.
Obstet Gynecol.
2002
;
99
(3):
401
–408
119
Papageorgiou AN, Desgranges MF, Masson M, Colle E, Shatz R, Gelfand MM. The antenatal use of betamethasone in the prevention of respiratory distress syndrome: a controlled double-blind study.
Pediatrics.
1979
;
63
(1):
73
–79
120
Silver RK, Vyskocil C, Solomon SL, Ragin A, Neerhof MG, Farrell EE. Randomized trial of antenatal dexamethasone in surfactant-treated infants delivered before 30 weeks gestation.
Obstet Gynecol.
1996
;
87(5 pt 1)
:
683
–691
121
White A, Marcucci G, Andrews E, Edwards K, Long W. Antenatal steroids and neonatal outcomes in controlled clinical trials of surfactant replacement.
Am J Obstet Gynecol.
1995
;
173
(1):
286
–290
122
Garite TJ, Rumney PJ, Briggs GG, et al. A randomized, placebo-controlled trial of betamethasone for the prevention of respiratory distress syndrome at 24 to 28 weeks' gestation.
Am J Obstet Gynecol.
1992
;
166
(2):
646
–651
123
Wright LL, Verter J, Younces N, et al. Antenatal corticosteroid administration and neonatal outcome in very low birth weight infants: the NICHD Neonatal Research Network.
Am J Obstet Gynecol.
1995
;
173
(1):
269
–274
124
Van Marter LJ, Allred EN, Leviton A, Pagano M, Parad R, Moore M. Antenatal glucocorticoid treatment does not reduce chronic lung disease among surviving preterm infants.
J Pediatr.
2001
;
138
(2):
198
–204
125
Seidner S, Pettenazzo A, Ikegami M, Jobe A. Corticosteroid potentiation of surfactant dose response in preterm rabbits.
J Appl Physiol.
1988
;
64
(6):
2366
–2371
126
Ikegami M, Jobe AH, Seidner S, Yamada T. Gestational effects of corticosteroids and surfactant in ventilated rabbits.
Pediatr Res.
1989
;
25
(1):
32
–37
127
Gladstone IM, Mercurio MR, Devenny SG, Jacobs HC. Antenatal steroids, postnatal surfactant, and pulmonary function in premature rabbits.
J Appl Physiol.
1989
;
67
(4):
1377
–1382
128
Ho JJ, Subramaniam P, Henderson-Smart DJ, Davis PG. Continuous distending pressure for respiratory distress syndrome in preterm infants.
Cochrane Database Syst Rev.
2002
;
(2):
CD002271
129
Gittermann MK, Fusch C, Gittermann AR, Regazzoni BM, Moessinger AC. Early nasal continuous positive airway pressure treatment reduces the need for intubation in very low birth weight infants.
Eur J Pediatr.
1997
;
156
(5):
384
–388
130
Verder H, Robertson B, Greisen G, et al. Surfactant therapy and nasal continuous positive airway pressure for newborns with respiratory distress syndrome. Danish-Swedish Multicenter Study Group.
N Engl J Med.
1994
;
331(16)
:
1051
–1055
131
Verder H, Albertsen P, Ebbesen F, et al. Nasal continuous positive airway pressure and early surfactant therapy for respiratory distress syndrome in newborns of less than 30 weeks' gestation.
Pediatrics.
1999
;
103
(2). Available at: www.pediatrics.org/cgi/content/full/103/2/e24
132
Dani C, Bertini G, Pezzati M, Cecchi A, Caviglioli C, Rubaltelli FF. Early extubation and nasal continuous positive airway pressure after surfactant treatment for respiratory distress syndrome among preterm infants <30 weeks' gestation.
Pediatrics.
2004
;
113
(6). Available at: www.pediatrics.org/cgi/content/full/113/6/e560
133
Kamper J, Feilberg Jorgensen N, Jonsbo F, Pedersen-Bjergaard L, Pryds O. The Danish national study in infants with extremely low gestational age and birth weight (the ETFOL study): respiratory morbidity and outcome. Danish ETFOL Study Group.
Acta Paediatr.
2004
;
93
(2):
225
–232
134
Meyer M, Mildenhall L, Wong M. Outcomes for infants weighing less than 1000 grams cared for with a nasal continuous positive airway pressure-based strategy.
J Paediatr Child Health.
2004
;
40(1–2)
:
38
–41
135
De Klerk AM, De Klerk RK. Nasal continuous positive airway pressure and outcomes of preterm infants.
J Paediatr Child Health.
2001
;
37
(2):
161
–167
136
Jónsson B, Katz-Salamon M, Faxelius G, Broberger U, Lagercrantz H. Neonatal care of very-low-birth weight infants in special-care units and neonatal intensive-care units in Stockholm: early nasal continuous positive airway pressure versus mechanical ventilation—gains and losses.
Acta Paediatr Suppl.
1997
;
419
:
4
–10
137
Wung JT. Continuous positive airway pressure. In: Wung JT, Polin RA, eds.
Respiratory Care of the Newborn: A Practical Approach.
New York, NY: Babies and Children's Hospital;
2000
138
Finer NN, Carlo WA, Duara S, et al. Delivery room continuous positive airway pressure/positive end-expiratory pressure in extremely low birth weight infants: a feasibility trial. NICHD Neonatal Research Network.
Pediatrics.
2004
;
114
(3):
651
–657
139
Lindner W, Vosseck S, Hummler H, Pohlandt F. Delivery room management of extremely low birth weight infants: spontaneous breathing or intubation?
Pediatrics.
1999
;
103(5 pt 1)
:
961
–967
140
Sandri F, Ancora G, Lanzoni A. et al. Prophylactic nasal continuous positive airways pressure in newborns 28–31 weeks gestation: multicenter randomized controlled clinical trial.
Arch Dis Child Fetal Neonatal Ed.
2004
;
89
(5):
F394
–F398
141
Aly H, Milner JD, Patel K, El-Mohandes AA. Does the experience with the use of nasal continuous positive airway pressure improve over time in extremely low birth weight infants?
Pediatrics.
2004
;
114
(3):
697
–702
142
Stevens TP, Blennow M, Soll RF. Early surfactant administration with brief ventilation vs selective surfactant and continued mechanical ventilation for preterm infants with or at risk for RDS.
Cochrane Database Syst Rev.
2000
;
(2):
CD003063
143
Avery ME, Tooley WH, Keller JB, et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers.
Pediatrics.
1987
;
79
(1):
26
–30
144
Van Marter LJ, Allred EN, Pagano M, et al. Do clinical markers of barotrauma and oxygen toxicity explain interhospital variation in rates of chronic lung disease? The Neonatal Committee for the Developmental Network.
Pediatrics.
2000
;
105
(6):
1194
–1201
145
Alpan G, Clyman RI. Cardiovascular effects of surfactant replacement with special reference to the patent ductus arteriosus. In: Robertson B, Taeusch HW, eds.
Lung Biology in Health and Disease: Surfactant Therapy for Lung Disease
. New York, NY: Marcel Dekker;
1995
:
531
–545
146
Clyman RI. Patent ductus arteriosus in the premature infant. In: Taeusch HW, Ballard RA, Gleason CA, eds.
Avery's Diseases of the Newborn
. 8th ed. Philadelphia, PA: Elsevier Saunders;
2005
:
816
–826
147
Taeusch HW, Ramierez-Schrempp D, Laing IA. Surfactant treatment of respiratory disorders. In: Taeusch HW, Ballard RA, Gleason CA, eds.
Avery's Disease of the Newborn
. 8th ed. Philadelphia, PA: Elsevier Saunders;
2005
:
670
–685
148
Couser RJ, Ferrera BT, Wright GB, et al. Prophylactic indomethacin therapy in the first twenty-four hours of life for the prevention of patent ductus arteriosus in preterm infants treated prophylactically with surfactant in the delivery room.
J Pediatr.
1996
;
128(5 pt 1)
:
631
–637
149
Raju TN, Langenberg P. Pulmonary hemorrhage and exogenous surfactant therapy: a metaanalysis.
J Pediatr.
1993
;
123
(4):
603
–610
150
Valls-i-Soler A, Lopez-Heredia J, Fernandez-Ruanova MD, Gastiasoro E. A simplified surfactant dosing procedure in respiratory distress syndrome: the “side-hole” randomized study. Spanish Surfactant Collaborative Group.
Acta Paediatr.
1997
;
86
(7):
747
–751
151
Stark AR; American Academy of Pediatrics, Committee on Fetus and Newborn. Levels of neonatal care [published correction appears in Pediatrics. 2005;115:1118].
Pediatrics.
2004
;
114
(5):
1341
–1347
152
Contributors and Reviewers for the Neonatal Resuscitation Guidelines. International guidelines for neonatal resuscitation: an excerpt from the guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care: international consensus on science.
Pediatrics
.
2000
;
106
(3):
e29
. Available at: www.pediatrics.org/cgi/content/full/106/3/e29. Accessed December 20, 2007
153
Warner B, Musial MJ, Chenier T, Donovan E. The effect of birth hospital type on the outcome of very low birth weight infants.
Pediatrics.
2004
;
113(1 pt 1)
:
35
–41
154
Chin SO, Brodsky NL, Bhandari V. Antenatal steroid use is associated with increased gastroesophageal reflux in neonates.
Am J Perinatol.
2003
;
20
(4):
205
–213
155
Lee SK, McMillan DD, Ohlsson A, et al. Variations in practice and outcomes in the Canadian NICU Network: 1996–1997.
Pediatrics.
2000
;
106
(5):
1070
–1079
156
The Cochrane Collaboration. Available at: www.cochrane.org/resources/revpro.htm. Accessed May 3,
2007