BACKGROUND:

Patients are surviving decades after congenital heart surgery (CHS), raising the importance of postoperative quality of life as an outcome measure. We determined the long-term social outcomes after CHS performed during childhood.

METHODS:

Between 1953 and 2009, 10 635 patients underwent surgery for congenital heart defects at <15 years of age in Finland. We obtained 4 control subjects per patient, matched by age, sex, birth time, and hospital district, from Statistics Finland, which also provided data on the highest education level, employment status, marital status, and progeny for both patients and control subjects. We included patients who were alive and ≥18 years of age at the end of the follow-up on December 31, 2017.

RESULTS:

A total of 7308 patients met inclusion criteria. Patients had on average similar high school or vocational education rates as the general population but lower undergraduate or higher education rates (female patients: risk ratio [RR] 0.8 [95% confidence interval (CI) 0.8–0.9]; male patients: RR 0.8 [95% CI 0.7–0.9]). Patients were less likely to be married or have progeny compared with the general population. The rate of employment was significantly lower (female patients: RR 0.8 [95% CI 0.8–0.9]; male patients: RR 0.8 [95% CI 0.8–0.9]) and the rate of retirement (female patients: RR 2.1 [95% CI 2.0–2.3]; male patients RR 3.1 [95% CI 2.9–3.5]) significantly higher among patients.

CONCLUSIONS:

Patients who undergo CHS at childhood age are, on average, more disadvantaged from both an educational and professional standpoint compared with the general population, regardless of the severity of the defect.

What’s Known on This Subject:

Heart defects are the most common congenital single-organ defects. Survival is improving, but neurodevelopmental and mental health disorders are an increasingly recognized late sequelae among these patients. Late socioeconomic outcomes after congenital heart surgery, however, remain understudied.

What This Study Adds:

This study reveals how children who undergo cardiac surgery remain disadvantaged from an educational and professional standpoint compared with healthy controls, regardless of defect severity, underscoring the importance of long-term follow-up and social support after cardiac surgery during childhood.

Advances in the diagnosis and care of patients with congenital heart defects (CHDs) have enabled tremendous improvements in both early and late results during the recent decades.13  Consequently, the majority of patients with CHDs are surviving to adulthood, reducing the value of surgical mortality and survival as outcome measures for this aging patient population. Nevertheless, focus within the clinical community has shifted from mere survival to social outcome and morbidity after surgery. However, authors of few studies have reported on the socioeconomic outcomes after congenital heart surgery (CHS).46  Furthermore, in the majority of previous studies, authors have used questionnaires to investigate socioeconomic outcomes, raising the risk for participant bias.79 

The Finnish pediatric CHS program was initiated in 1953 with >16 000 operations performed to date. In the current study, we combined information from the Finnish national pediatric cardiac surgery database with objective data from Statistics Finland to obtain a comprehensive and objective overview of the social outcomes after CHS, including education level, employment status, marriage rate, and offspring.

We obtained patient and operative data from the custom-built ProCardio version 8 (Research Registry of Pediatric Cardiac Surgery, Melba Group, Helsinki, Finland) database running on FileMaker Pro version 8.5 (FileMaker Inc, Santa Clara, CA), which contains data on all CHSs performed since 1953 in Finland. The database has been used in several of our previous studies.2,3,10  Operations were performed at 5 university hospitals (Helsinki, Kuopio, Oulu, Tampere, and Turku) but have been centralized to Helsinki since 1997. The cardiac surgery database was first retrospectively created by importing material from collected surgical logs, diagnosis cards, and computer files of the hospitals for all patients who underwent surgery before the database was created and was updated for all patients who underwent surgery thereafter. Surgical logs contained daily entries of all operations performed in the hospital; diagnosis cards and computer files contained information on all patients of the hospital, listed by International Classification of Diseases diagnosis codes. If the information was incomplete, the medical records of the patients were manually reviewed. Later structural defect diagnoses were added prospectively into the database, with room for up to 4 diagnoses. We excluded all patients who only underwent isolated pacemaker implantation or who underwent patent ductus arteriosus (PDA) ligation at the age of ≤30 days because of the high incidence of prematurity and thus comorbidities unrelated to their cardiac defects or surgeries. Only patients who survived their first operation (>30 days after the operation) were included. Patient data were obtained from 1953 to 2009.

The Finnish Population Registry provided the status and time of death for all patients. The registry is a national governmental organization that gathers data on the basic demographics of all Finnish citizens. The ProCardio CHS database acquires the date of death of patients from the Finnish Population Registry through an ongoing contract. We obtained 4 control subjects per patient, matched by age, sex, birth date, and hospital district, from Statistics Finland, which is a Finnish public authority that gathers and compiles all statistical information regarding the Finnish population. The organization has 160 different statistics pooled from existing local and national governmental registers to establish comprehensive statistical databanks. Therefore, control subjects were pooled from the Finnish general population without predefined criteria for their medical history. Additionally, intimate medical data are generally not collected for the population outside of disease-specific databases in Finland. Furthermore, we also obtained data on education, employment rate, marital status, and offspring for both patients and control subjects from Statistics Finland. Data from all these databases were combined by using the national identification number of patients.

Education levels are reported as high school or vocational, undergraduate, and graduate or doctorate on the basis of the categories used by Statistics Finland. Similarly, the employment status of patients and controls was reported, on the basis of the categorization system by Statistics Finland, as employed, unemployed, student, retired, army or civil service, and other. The group “All” included all patients of the study (simple, severe, and miscellaneous defects).

We only included patients who were ≥18 years of age at the end of follow-up on December 31, 2017.

Each patient was assigned one primary diagnosis from a severity-based hierarchical list of cardiac defects (Supplemental Tables 1 and 6): PDA, atrial septal defect, coarctation of the aorta, ventricular septal defect, tetralogy of Fallot (TOF), transposition of the great arteries (TGA), hypoplastic left heart syndrome, and univentricular heart (UVH). All remaining cardiac defects were collectively referred to as miscellaneous, including truncus arteriosus, atrioventricular canal, congenitally corrected TGA, pulmonary stenosis, total anomalous pulmonary venous return, partial anomalous pulmonary venous drainage, Ebstein anomaly, interrupted aortic arch, isolated valve defects, aortopulmonary window, vascular ring, trauma, pericardial disease, aortic aneurysms, and heart transplants. For patients with several cardiac defects, we chose the hierarchically more severe condition (Supplemental Table 6). To simplify the analyses, we dichotomized defect severity into simple (PDA, atrial septal defect, coarctation of the aorta, and ventricular septal defect) and severe (TOF, TGA, hypoplastic left heart syndrome, and UVH) defects according to the lack or presence of cyanosis, respectively.

Analyses were conducted by using IBM SPSS Statistics version 25.0 (IBM SPSS Statistics, IBM Corporation). Results of the analyses were presented in tables as the percentage and absolute number of patients and control subjects within each investigated measurement group. The frequencies of the studied characteristics in patients and controls were compared by using risk ratios (RRs), that is, the risk of a specific characteristic in patients divided by the corresponding risk in control subjects, with their respective 95% confidence intervals (CIs) alongside the frequencies. All results that did not include the value 1 in the 95% CIs were considered statistically significant.

A flowchart of the study population selection is presented in Fig 1. We included 7308 patients who were alive and ≥18 years of age at the end of the study on December 31, 2017 (Fig 1). Of these patients, 100% had information regarding marital status, progeny, and employment status, with 77% having data regarding their level of education (5583 of 7308).

FIGURE 1

Flowchart of the study.

FIGURE 1

Flowchart of the study.

Close modal

Baseline characteristics for the patient population are presented in Table 1. Women outnumbered men (54%; n = 3945). The mean age at the first operation was 4.5 years (SD ±4.1); the mean age at the end of follow-up was 38.2 years (SD ±13.9), with a mean follow-up time of 29.1 years (SD ±11.8). There were 161 (2%) patients with mental disability: 142 with simple defects (3%) and 19 with severe defects (2%).

TABLE 1

Patient Characteristics

CharacteristicsPatients (N = 7308)
Cardiac defect group, % (n 
 Simple 72 (5291) 
 Severe 11 (821) 
 Miscellaneous 17 (1196) 
Male sex, % (n46 (3363) 
Mean age at first operation, y (±SD) 4.5 (±4.1) 
Mean age at end of follow-up, y (±SD) 38.2 (±13.9) 
Mean follow-up time, y (±SD) 29.1 (±11.8) 
Mental disability, % (n 
 Simple 3 (142) 
 Severe 2 (19) 
CharacteristicsPatients (N = 7308)
Cardiac defect group, % (n 
 Simple 72 (5291) 
 Severe 11 (821) 
 Miscellaneous 17 (1196) 
Male sex, % (n46 (3363) 
Mean age at first operation, y (±SD) 4.5 (±4.1) 
Mean age at end of follow-up, y (±SD) 38.2 (±13.9) 
Mean follow-up time, y (±SD) 29.1 (±11.8) 
Mental disability, % (n 
 Simple 3 (142) 
 Severe 2 (19) 

Data on the education levels of patients and the reference population are presented in Table 2. Overall, female patients reached at least the same rate of high school or vocational level of education as the general female population but had lower rates of undergraduate or graduate degrees than their peers (Table 2). Interestingly, female patients with TOF had higher high school or vocational education levels than their respective reference population. In contrast, male patients had overall lower high school, undergraduate, and graduate education rates than their corresponding reference population. In the subgroup analyses, however, male patients with simple and severe defects had similar undergraduate or lower education degrees compared with their respective control populations. However, the diminished statistical power due to smaller sample sizes might partly contribute to the lack of statistical significance in the subgroup analyses. Female patients seemed to have overall higher education levels than male patients.

TABLE 2

Education Rates Among Patients and Reference Population by Defect Severity

Female SexMale Sex
Patients, % (n)Controls, % (n)RR95% CIPatients, % (n)Controls, % (n)RR95% CI
All         
 High school or vocational 56 (2219) 55 (8344) 1.0 0.99–1.06 55 (1881) 58 (7555) 1.0 0.93–0.99 
 Undergraduate 14 (551) 17 (2534) 0.8 0.77–0.91 10 (324) 11 (1470) 0.8 0.76–0.95 
 Graduate or doctorate 10 (380) 14 (2056) 0.7 0.64–0.79 7 (229) 10 (1242) 0.7 0.62–0.81 
 Unknown 20 (795) 15 (2275) — — 28 (929) 21 (2677) — — 
 Grand total 100 (3945) 100 (15 209) — — 100 (3363) 100 (12 944) — — 
Simple         
 High school or vocational 57 (1749) 55 (6503) 1.0 1.00–1.07 57 (1265) 58 (4902) 1.0 0.94–1.02 
 Undergraduate 15 (442) 16 (1914) 0.9 0.80–0.97 10 (219) 11 (940) 0.9 0.77–1.02 
 Graduate or doctorate 10 (312) 14 (1618) 0.7 0.66–0.83 8 (172) 10 (858) 0.8 0.65–0.89 
 Unknown 18 (559) 15 (1710) — — 25 (570) 21 (1735) — — 
 Grand total 100 (3065) 100 (11 745) — — 100 (2226) 100 (8435) — — 
Severe         
 High school or vocational 58 (183) 51 (641) 1.1 1.03–1.27 56 (285) 58 (1163) 1.0 0.89–1.06 
 Undergraduate 13 (40) 18 (225) 0.7 0.52–0.97 10 (51) 11 (227) 0.9 0.67–1.19 
 Graduate or doctorate 6 (20) 12 (153) 0.5 0.33–0.82 5 (24) 8 (169) 0.6 0.37–0.86 
 Unknown 23 (73) 19 (242) — — 29 (146) 23 (452) — — 
 Grand total 100 (315) 100 (1261) — — 100 (506) 100 (2011) — — 
TOF         
 High school or vocational 61 (104) 51 (345) 1.2 1.05–1.39 56 (144) 59 (600) 0.9 0.84–1.07 
 Undergraduate 9 (16) 18 (123) 0.5 0.32–0.85 10 (27) 11 (109) 1.0 0.65–1.45 
 Graduate or doctorate 7 (12) 12 (84) 0.6 0.32–1.02 5 (13) 10 (105) 0.5 0.28–0.85 
 Unknown 23 (38) 19 (127) — — 29 (75) 20 (205) — — 
 Grand total 100 (170) 100 (679) — — 100 (259) 100 (1019) — — 
TGA         
 High school or vocational 58 (55) 51 (190) 1.1 0.94–1.39 60 (112) 59 (437) 1.1 0.97–1.17 
 Undergraduate 16 (15) 17 (65) 0.9 0.54–1.52 11 (21) 14 (102) 0.8 0.61–1.11 
 Graduate or doctorate 6 (6) 13 (49) 0.5 0.21–1.09 5 (10) 8 (59) 0.8 0.32–2.14 
 Unknown 20 (19) 19 (70) — — 24 (44) 19 (143) — — 
 Grand total 100 (95) 100 (374) — — 100 (187) 100 (741) — — 
UVH         
 High school or vocational 48 (23) 50 (99) 1.0 0.70–1.34 56 (29) 56 (119) 1.0 0.76–1.30 
 Undergraduate 19 (9) 19 (37) 1.0 0.53–1.96 6 (3) 8 (16) 0.8 0.23–2.53 
 Graduate or doctorate — 19 (20) — — (-) 2 (5) — — 
 Unknown 33 (16) 22 (44) — — 38 (20) 34 (72) — — 
 Grand total 100 (48) 100 (200) — — 100 (52) 100 (212) — — 
Female SexMale Sex
Patients, % (n)Controls, % (n)RR95% CIPatients, % (n)Controls, % (n)RR95% CI
All         
 High school or vocational 56 (2219) 55 (8344) 1.0 0.99–1.06 55 (1881) 58 (7555) 1.0 0.93–0.99 
 Undergraduate 14 (551) 17 (2534) 0.8 0.77–0.91 10 (324) 11 (1470) 0.8 0.76–0.95 
 Graduate or doctorate 10 (380) 14 (2056) 0.7 0.64–0.79 7 (229) 10 (1242) 0.7 0.62–0.81 
 Unknown 20 (795) 15 (2275) — — 28 (929) 21 (2677) — — 
 Grand total 100 (3945) 100 (15 209) — — 100 (3363) 100 (12 944) — — 
Simple         
 High school or vocational 57 (1749) 55 (6503) 1.0 1.00–1.07 57 (1265) 58 (4902) 1.0 0.94–1.02 
 Undergraduate 15 (442) 16 (1914) 0.9 0.80–0.97 10 (219) 11 (940) 0.9 0.77–1.02 
 Graduate or doctorate 10 (312) 14 (1618) 0.7 0.66–0.83 8 (172) 10 (858) 0.8 0.65–0.89 
 Unknown 18 (559) 15 (1710) — — 25 (570) 21 (1735) — — 
 Grand total 100 (3065) 100 (11 745) — — 100 (2226) 100 (8435) — — 
Severe         
 High school or vocational 58 (183) 51 (641) 1.1 1.03–1.27 56 (285) 58 (1163) 1.0 0.89–1.06 
 Undergraduate 13 (40) 18 (225) 0.7 0.52–0.97 10 (51) 11 (227) 0.9 0.67–1.19 
 Graduate or doctorate 6 (20) 12 (153) 0.5 0.33–0.82 5 (24) 8 (169) 0.6 0.37–0.86 
 Unknown 23 (73) 19 (242) — — 29 (146) 23 (452) — — 
 Grand total 100 (315) 100 (1261) — — 100 (506) 100 (2011) — — 
TOF         
 High school or vocational 61 (104) 51 (345) 1.2 1.05–1.39 56 (144) 59 (600) 0.9 0.84–1.07 
 Undergraduate 9 (16) 18 (123) 0.5 0.32–0.85 10 (27) 11 (109) 1.0 0.65–1.45 
 Graduate or doctorate 7 (12) 12 (84) 0.6 0.32–1.02 5 (13) 10 (105) 0.5 0.28–0.85 
 Unknown 23 (38) 19 (127) — — 29 (75) 20 (205) — — 
 Grand total 100 (170) 100 (679) — — 100 (259) 100 (1019) — — 
TGA         
 High school or vocational 58 (55) 51 (190) 1.1 0.94–1.39 60 (112) 59 (437) 1.1 0.97–1.17 
 Undergraduate 16 (15) 17 (65) 0.9 0.54–1.52 11 (21) 14 (102) 0.8 0.61–1.11 
 Graduate or doctorate 6 (6) 13 (49) 0.5 0.21–1.09 5 (10) 8 (59) 0.8 0.32–2.14 
 Unknown 20 (19) 19 (70) — — 24 (44) 19 (143) — — 
 Grand total 100 (95) 100 (374) — — 100 (187) 100 (741) — — 
UVH         
 High school or vocational 48 (23) 50 (99) 1.0 0.70–1.34 56 (29) 56 (119) 1.0 0.76–1.30 
 Undergraduate 19 (9) 19 (37) 1.0 0.53–1.96 6 (3) 8 (16) 0.8 0.23–2.53 
 Graduate or doctorate — 19 (20) — — (-) 2 (5) — — 
 Unknown 33 (16) 22 (44) — — 38 (20) 34 (72) — — 
 Grand total 100 (48) 100 (200) — — 100 (52) 100 (212) — — 

All includes simple, severe, and miscellaneous defects. —, not applicable.

Data on the employment status of all patients were complete (7308 patients; Table 3). A total of 4058 (55%) patients were employed at the end of the follow-up. Both female and male patients had lower rates of employment and higher rates of retirement than the general population, regardless of the severity of the defect. Overall, the rate of unemployment was similar between the patients and control subjects for both women and men. However, male patients with severe defects had higher unemployment rates than the control subjects. Moreover, a higher number of female patients were students compared with the control subjects.

TABLE 3

Employment Rates Among Patients and Reference Population by Defect Severity

Female SexMale Sex
Patients, % (n)Controls, % (n)RR95% CIPatients, % (n)Controls, % (n)RR95% CI
All         
 Employed 56 (2222) 68 (10 305) 0.8 0.81–0.86 55 (1836) 66 (8503) 0.8 0.80–0.86 
 Unemployed 9 (338) 8 (1232) 1.1 0.95–1.19 11 (388) 11 (1431) 1.0 0.94–1.16 
 Student 9 (371) 9 (1445) 1.0 0.89–1.10 11 (382) 12 (1565) 0.9 0.85–1.04 
 Retired 21 (827) 10 (1486) 2.1 1.99–2.32 19 (624) 6 (763) 3.1 2.85–3.47 
 Army or civil service — 0 (20) — — 0 (10) 1 (112) 0.3 0.18–0.66 
 Other not work 5 (187) 5 (717) 1.0 0.84–1.15 4 (122) 4 (547) 0.9 0.71–1.04 
 Grand total 100 (3945) 100 (15 209) — — 100 (3363) 100 (12 944) — — 
Simple         
 Employed 59 (1801) 68 (7966) 0.9 0.84–0.90 58 (1282) 66 (5597) 0.9 0.84–0.90 
 Unemployed 9 (267) 8 (948) 1.1 0.95–1.23 11 (246) 11 (920) 1.0 0.89–1.16 
 Student 7 (246) 8 (998) 0.9 0.83–1.08 10 (221) 11 (902) 0.9 0.81–1.07 
 Retired 20 (603) 11 (1287) 1.8 1.64–1.96 18 (397) 7 (593) 2.5 2.25–2.86 
 Army or civil service — 0 (16) — — 0 (7) 1 (60) 0.4 0.20–0.97 
 Other not work 5 (148) 5 (530) 1.0 0.88–1.25 3 (73) 4 (350) 0.8 0.62–1.01 
 Grand total 100 (3065) 100 (11 745) — — 100 (2226) 100 (8435) — — 
Severe         
 Employed 45 (141) 66 (833) 0.7 0.60–0.77 49 (248) 64 (1286) 0.8 0.70–0.84 
 Unemployed 10 (32) 9 (110) 1.2 0.80–1.69 14 (71) 11 (218) 1.3 1.01–1.66 
 Student 19 (60) 14 (176) 1.4 1.05–1.78 18 (91) 17 (341) 1.1 0.86–1.31 
 Retired 20 (64) 6 (70) 3.7 2.67–5.02 14 (72) 3 (59) 4.9 3.49–6.75 
 Army or civil service — 0 (4) — — — 1 (27) — — 
 Other not work 6 (19) 5 (68) 1.1 0.79–1.55 5 (23) 4 (80) 1.1 0.73–1.80 
 Grand total 100 (315) 100 (1261) — — 100 (506) 100 (2011) — — 
TOF         
 Employed 45 (76) 66 (452) 0.7 0.56–0.80 50 (130) 66 (678) 0.8 0.66–0.86 
 Unemployed 13 (22) 8 (55) 1.6 1.00–2.54 14 (36) 11 (112) 1.3 0.89–1.79 
 Student 13 (23) 11 (77) 1.2 0.77–1.84 14 (36) 13 (131) 1.1 0.77–1.52 
 Retired 25 (42) 9 (58) 2.9 2.02–4.15 18 (47) 5 (46) 4.0 2.74–5.90 
 Army or civil service — 1 (4) — — — 1 (9) — — 
 Other not work 4 (7) 5 (33) 0.8 0.38–1.88 4 (10) 4 (43) 0.9 0.47–1.80 
 Grand total 100 (170) 100 (679) — — 100 (259) 100 (1019) — — 
TGA         
 Employed 51 (48) 66 (248) 0.8 0.62–0.94 54 (101) 66 (491) 0.8 0.71–0.94 
 Unemployed 9 (9) 9 (35) 1.0 0.50–2.03 16 (29) 12 (85) 1.4 0.92–2.00 
 Student 21 (20) 16 (61) 1.3 0.82–2.03 16 (30) 16 (116) 1.0 0.71–1.48 
 Retired 12 (11) 2 (9) 4.8 2.05–11.28 10 (19) 1 (10) 7.5 3.56–15.92 
 Army or civil service — — — — — 1 (9) — — 
 Other not work 7 (7) 5 (21) 1.3 0.58–3.00 4 (8) 4 (30) 1.1 0.49–2.27 
 Grand total 100 (95) 100 (374) — — 100 (187) 100 (741) — — 
UVH         
 Employed 33 (16) 65 (130) 0.5 0.34–0.78 33 (17) 52 (110) 0.6 0.42–0.95 
 Unemployed — 10 (20) — — 11 (6) 9 (20) 1.2 0.52–2.89 
 Student 33 (16) 17 (34) 2.0 1.19–3.25 35 (18) 32 (67) 1.1 0.72–1.67 
 Retired 23 (11) 2 (3) 15.3 4.43–52.64 11 (6) 1 (3) 8.2 2.11–31.53 
 Army or civil service — — — — — 2 (4) — — 
 Other not work 11 (5) 7 (13) 1.3 0.44–3.76 10 (5) 3 (7) 2.3 0.71–7.66 
 Grand total 100 (48) 100 (200) — — 100 (52) 100 (212) — — 
Female SexMale Sex
Patients, % (n)Controls, % (n)RR95% CIPatients, % (n)Controls, % (n)RR95% CI
All         
 Employed 56 (2222) 68 (10 305) 0.8 0.81–0.86 55 (1836) 66 (8503) 0.8 0.80–0.86 
 Unemployed 9 (338) 8 (1232) 1.1 0.95–1.19 11 (388) 11 (1431) 1.0 0.94–1.16 
 Student 9 (371) 9 (1445) 1.0 0.89–1.10 11 (382) 12 (1565) 0.9 0.85–1.04 
 Retired 21 (827) 10 (1486) 2.1 1.99–2.32 19 (624) 6 (763) 3.1 2.85–3.47 
 Army or civil service — 0 (20) — — 0 (10) 1 (112) 0.3 0.18–0.66 
 Other not work 5 (187) 5 (717) 1.0 0.84–1.15 4 (122) 4 (547) 0.9 0.71–1.04 
 Grand total 100 (3945) 100 (15 209) — — 100 (3363) 100 (12 944) — — 
Simple         
 Employed 59 (1801) 68 (7966) 0.9 0.84–0.90 58 (1282) 66 (5597) 0.9 0.84–0.90 
 Unemployed 9 (267) 8 (948) 1.1 0.95–1.23 11 (246) 11 (920) 1.0 0.89–1.16 
 Student 7 (246) 8 (998) 0.9 0.83–1.08 10 (221) 11 (902) 0.9 0.81–1.07 
 Retired 20 (603) 11 (1287) 1.8 1.64–1.96 18 (397) 7 (593) 2.5 2.25–2.86 
 Army or civil service — 0 (16) — — 0 (7) 1 (60) 0.4 0.20–0.97 
 Other not work 5 (148) 5 (530) 1.0 0.88–1.25 3 (73) 4 (350) 0.8 0.62–1.01 
 Grand total 100 (3065) 100 (11 745) — — 100 (2226) 100 (8435) — — 
Severe         
 Employed 45 (141) 66 (833) 0.7 0.60–0.77 49 (248) 64 (1286) 0.8 0.70–0.84 
 Unemployed 10 (32) 9 (110) 1.2 0.80–1.69 14 (71) 11 (218) 1.3 1.01–1.66 
 Student 19 (60) 14 (176) 1.4 1.05–1.78 18 (91) 17 (341) 1.1 0.86–1.31 
 Retired 20 (64) 6 (70) 3.7 2.67–5.02 14 (72) 3 (59) 4.9 3.49–6.75 
 Army or civil service — 0 (4) — — — 1 (27) — — 
 Other not work 6 (19) 5 (68) 1.1 0.79–1.55 5 (23) 4 (80) 1.1 0.73–1.80 
 Grand total 100 (315) 100 (1261) — — 100 (506) 100 (2011) — — 
TOF         
 Employed 45 (76) 66 (452) 0.7 0.56–0.80 50 (130) 66 (678) 0.8 0.66–0.86 
 Unemployed 13 (22) 8 (55) 1.6 1.00–2.54 14 (36) 11 (112) 1.3 0.89–1.79 
 Student 13 (23) 11 (77) 1.2 0.77–1.84 14 (36) 13 (131) 1.1 0.77–1.52 
 Retired 25 (42) 9 (58) 2.9 2.02–4.15 18 (47) 5 (46) 4.0 2.74–5.90 
 Army or civil service — 1 (4) — — — 1 (9) — — 
 Other not work 4 (7) 5 (33) 0.8 0.38–1.88 4 (10) 4 (43) 0.9 0.47–1.80 
 Grand total 100 (170) 100 (679) — — 100 (259) 100 (1019) — — 
TGA         
 Employed 51 (48) 66 (248) 0.8 0.62–0.94 54 (101) 66 (491) 0.8 0.71–0.94 
 Unemployed 9 (9) 9 (35) 1.0 0.50–2.03 16 (29) 12 (85) 1.4 0.92–2.00 
 Student 21 (20) 16 (61) 1.3 0.82–2.03 16 (30) 16 (116) 1.0 0.71–1.48 
 Retired 12 (11) 2 (9) 4.8 2.05–11.28 10 (19) 1 (10) 7.5 3.56–15.92 
 Army or civil service — — — — — 1 (9) — — 
 Other not work 7 (7) 5 (21) 1.3 0.58–3.00 4 (8) 4 (30) 1.1 0.49–2.27 
 Grand total 100 (95) 100 (374) — — 100 (187) 100 (741) — — 
UVH         
 Employed 33 (16) 65 (130) 0.5 0.34–0.78 33 (17) 52 (110) 0.6 0.42–0.95 
 Unemployed — 10 (20) — — 11 (6) 9 (20) 1.2 0.52–2.89 
 Student 33 (16) 17 (34) 2.0 1.19–3.25 35 (18) 32 (67) 1.1 0.72–1.67 
 Retired 23 (11) 2 (3) 15.3 4.43–52.64 11 (6) 1 (3) 8.2 2.11–31.53 
 Army or civil service — — — — — 2 (4) — — 
 Other not work 11 (5) 7 (13) 1.3 0.44–3.76 10 (5) 3 (7) 2.3 0.71–7.66 
 Grand total 100 (48) 100 (200) — — 100 (52) 100 (212) — — 

All includes simple, severe, and miscellaneous defects. —, not applicable.

Both female and male patients were less often married or in a registered partnership compared with the general population (Table 4). Overall, a larger proportion of female patients were married or in a registered relationship compared with male patients in both the simple and severe defect groups. Marriage was also more common among women than men of the general population. A larger proportion of female patients were divorced compared with male patients, albeit at a comparable rate to the general population.

TABLE 4

Marital Status Among Patients and Reference Population by Defect Severity

Female SexMale Sex
Patients, % (n)Controls, % (n)RR95% CIPatients, % (n)Controls, % (n)RR95% CI
All         
 Unmarried 52 (2055) 47 (7145) 1.1 1.07–1.15 65 (2175) 61 (7933) 1.1 1.03–1.09 
 Married or registered partnership 35 (1385) 39 (5987) 0.9 0.85–0.94 28 (932) 32 (4085) 0.9 0.83–0.93 
 Divorced 11 (437) 12 (1822) 0.9 0.84–1.02 7 (242) 7 (889) 0.91–1.20 
 Other 2 (68) 2 (255) 0.79–1.34 0 (14) 0 (37) 1.5 0.79–2.69 
 Grand total 100 (3945) 100 (15 209) — — 100 (3363) 100 (12 944) — — 
Simple         
 Unmarried 48 (1483) 44 (5160) 1.1 1.06–1.15 61 (1347) 58 (4908) 1.0 1.00–1.08 
 Married or registered partnership 38 (1153) 41 (4847) 0.9 0.87–0.96 31 (679) 34 (2850) 0.9 0.84–0.97 
 Divorced 12 (366) 13 (1521) 0.9 0.83–1.03 8 (188) 8 (650) 1.1 0.94–1.28 
 Other 2 (63) 2 (217) 1.1 0.84–1.47 0 (12) 0 (27) 1.7 0.86–3.32 
 Grand total 100 (3065) 100 (11 745) — — 100 (2226) 100 (8435) — — 
Severe         
 Unmarried 64 (203) 55 (695) 1.2 1.06–1.28 74 (377) 69 (1382) 1.1 1.02–1.14 
 Married or registered partnership 27 (84) 33 (417) 0.8 0.66–0.98 22 (112) 26 (533) 0.8 0.70–1.00 
 Divorced 9 (28) 10 (131) 0.9 0.58–1.26 4 (18) 5 (92) 0.8 0.47–1.28 
 Other  2 (19) — —  0 (4) — — 
 Grand total 100 (315) 100 (1261) — — 100 (506) 100 (2011) — — 
TOF         
 Unmarried 60 (102) 47 (316) 1.3 1.10–1.48 70 (182) 63 (639) 1.1 1.02–1.23 
 Married or registered partnership 28 (48) 36 (246) 0.8 0.60–1.01 26 (68) 31 (312) 0.9 0.69–1.07 
 Divorced 12 (20) 14 (99) 0.8 0.51–1.27 4 (9) 6 (64) 0.6 0.28–1.10 
 Other — 3 (18) — — — 0 (4) — — 
 Grand total 100 (170) 100 (679) — — 100 (259) 100 (1019) — — 
TGA         
 Unmarried 67 (64) 65 (243) 0.89–1.22 76 (141) 70 (520) 1.1 0.97–1.17 
 Married or registered partnership 29 (27) 30 (111) 0.67–1.37 21 (41) 27 (197) 0.8 0.61–1.11 
 Divorced 4 (4) 5 (20) 0.8 0.28–2.25 3 (5) 3 (24) 0.8 0.32–2.14 
 Other — — — — — — — — 
 Grand total 100 (95) 100 (374) — — 100 (187) 100 (741) — — 
UVH         
 Unmarried 73 (35) 65 (128) 1.1 0.94–1.41 87 (45) 87 (184) 0.40–2.38 
 Married or registered partnership 19 (9) 30 (60) 0.6 0.33–1.17 5 (3) 11 (24) 0.5 0.16–1.63 
 Divorced 8 (4) 5 (12) 1.4 0.47–4.12 8 (4) 2 (4) 4.1 1.05–15.76 
 Other — — — — — — — — 
 Grand total 100 (48) 100 (200) — — 100 (52) 100 (212) — — 
Female SexMale Sex
Patients, % (n)Controls, % (n)RR95% CIPatients, % (n)Controls, % (n)RR95% CI
All         
 Unmarried 52 (2055) 47 (7145) 1.1 1.07–1.15 65 (2175) 61 (7933) 1.1 1.03–1.09 
 Married or registered partnership 35 (1385) 39 (5987) 0.9 0.85–0.94 28 (932) 32 (4085) 0.9 0.83–0.93 
 Divorced 11 (437) 12 (1822) 0.9 0.84–1.02 7 (242) 7 (889) 0.91–1.20 
 Other 2 (68) 2 (255) 0.79–1.34 0 (14) 0 (37) 1.5 0.79–2.69 
 Grand total 100 (3945) 100 (15 209) — — 100 (3363) 100 (12 944) — — 
Simple         
 Unmarried 48 (1483) 44 (5160) 1.1 1.06–1.15 61 (1347) 58 (4908) 1.0 1.00–1.08 
 Married or registered partnership 38 (1153) 41 (4847) 0.9 0.87–0.96 31 (679) 34 (2850) 0.9 0.84–0.97 
 Divorced 12 (366) 13 (1521) 0.9 0.83–1.03 8 (188) 8 (650) 1.1 0.94–1.28 
 Other 2 (63) 2 (217) 1.1 0.84–1.47 0 (12) 0 (27) 1.7 0.86–3.32 
 Grand total 100 (3065) 100 (11 745) — — 100 (2226) 100 (8435) — — 
Severe         
 Unmarried 64 (203) 55 (695) 1.2 1.06–1.28 74 (377) 69 (1382) 1.1 1.02–1.14 
 Married or registered partnership 27 (84) 33 (417) 0.8 0.66–0.98 22 (112) 26 (533) 0.8 0.70–1.00 
 Divorced 9 (28) 10 (131) 0.9 0.58–1.26 4 (18) 5 (92) 0.8 0.47–1.28 
 Other  2 (19) — —  0 (4) — — 
 Grand total 100 (315) 100 (1261) — — 100 (506) 100 (2011) — — 
TOF         
 Unmarried 60 (102) 47 (316) 1.3 1.10–1.48 70 (182) 63 (639) 1.1 1.02–1.23 
 Married or registered partnership 28 (48) 36 (246) 0.8 0.60–1.01 26 (68) 31 (312) 0.9 0.69–1.07 
 Divorced 12 (20) 14 (99) 0.8 0.51–1.27 4 (9) 6 (64) 0.6 0.28–1.10 
 Other — 3 (18) — — — 0 (4) — — 
 Grand total 100 (170) 100 (679) — — 100 (259) 100 (1019) — — 
TGA         
 Unmarried 67 (64) 65 (243) 0.89–1.22 76 (141) 70 (520) 1.1 0.97–1.17 
 Married or registered partnership 29 (27) 30 (111) 0.67–1.37 21 (41) 27 (197) 0.8 0.61–1.11 
 Divorced 4 (4) 5 (20) 0.8 0.28–2.25 3 (5) 3 (24) 0.8 0.32–2.14 
 Other — — — — — — — — 
 Grand total 100 (95) 100 (374) — — 100 (187) 100 (741) — — 
UVH         
 Unmarried 73 (35) 65 (128) 1.1 0.94–1.41 87 (45) 87 (184) 0.40–2.38 
 Married or registered partnership 19 (9) 30 (60) 0.6 0.33–1.17 5 (3) 11 (24) 0.5 0.16–1.63 
 Divorced 8 (4) 5 (12) 1.4 0.47–4.12 8 (4) 2 (4) 4.1 1.05–15.76 
 Other — — — — — — — — 
 Grand total 100 (48) 100 (200) — — 100 (52) 100 (212) — — 

All includes simple, severe, and miscellaneous defects. —, not applicable.

Both female and male patients had a lower number of progenies compared with the general population (Table 5). Nevertheless, the majority of female patients with simple defects had offspring as opposed to male patients. The majority of patients with severe defects did not have offspring. Male patients with UVH had a higher number of offspring compared with female patients.

TABLE 5

Progeny Among Patients and Reference Population by Defect Severity

Female SexMale Sex
Patients, % (n)Controls, % (n)RR95% CIPatients, % (n)Controls, % (n)RR95% CI
All         
 No offspring 49 (1947) 41 (6289) 1.3 1.21–1.31 63 (2102) 57 (7340) 1.1 1.11–1.19 
 Offspring 51 (1998) 59 (8920) 0.9 0.89–0.93 37 (1261) 43 (5604) 0.9 0.88–0.93 
 Grand total 100 (3945) 100 (15 209) — — 100 (3363) 100 (12 944) — — 
Simple         
 No offspring 45 (1373) 39 (4529) 1.2 1.15–1.27 58 (1298) 53 (4508) 1.2 1.08–1.18 
 Offspring 55 (1692) 61 (7216) 0.9 0.92–0.95 42 (928) 47 (3927) 0.9 0.90–0.96 
 Grand total 100 (3065) 100 (11 745) — — 100 (2226) 100 (8435) — — 
Severe         
 No offspring 66 (209) 50 (631) 1.5 1.33–1.67 72 (364) 65 (1300) 1.2 1.09–1.27 
 Offspring 34 (106) 50 (630) 0.8 0.68–0.84 28 (142) 35 (711) 0.8 0.76–0.92 
 Grand total 100 (315) 100 (1261) — — 100 (506) 100 (2011) — — 
TOF         
 No offspring 59 (101) 42 (284) 1.4 1.22–1.66 71 (185) 60 (611) 1.2 1.09–1.31 
 Offspring 41 (69) 58 (395) 0.7 0.58–0.85 29 (74) 40 (408) 0.7 0.58–0.88 
 Grand total 100 (170) 100 (679) — — 100 (259) 100 (1019) — — 
TGA         
 No offspring 65 (62) 58 (217) 1.1 0.95–1.33 67 (126) 65 (483) 1.0 0.92–1.16 
 Offspring 35 (33) 42 (157) 0.8 0.61–1.12 33 (61) 35 (258) 0.9 0.75–1.18 
 Grand total 100 (95) 100 (374) — — 100 (187) 100 (741) — — 
UVH         
 No offspring 92 (44) 61 (122) 1.5 1.31–1.73 87 (45) 79 (167) 1.1 0.97–1.25 
 Offspring 8 (4) 39 (78)) 0.2 0.08–0.56 13 (7) 21 (45) 0.6 0.30–1.32 
 Grand total 100 (48) 100 (200) — — 100 (52) 100 (212) — — 
Female SexMale Sex
Patients, % (n)Controls, % (n)RR95% CIPatients, % (n)Controls, % (n)RR95% CI
All         
 No offspring 49 (1947) 41 (6289) 1.3 1.21–1.31 63 (2102) 57 (7340) 1.1 1.11–1.19 
 Offspring 51 (1998) 59 (8920) 0.9 0.89–0.93 37 (1261) 43 (5604) 0.9 0.88–0.93 
 Grand total 100 (3945) 100 (15 209) — — 100 (3363) 100 (12 944) — — 
Simple         
 No offspring 45 (1373) 39 (4529) 1.2 1.15–1.27 58 (1298) 53 (4508) 1.2 1.08–1.18 
 Offspring 55 (1692) 61 (7216) 0.9 0.92–0.95 42 (928) 47 (3927) 0.9 0.90–0.96 
 Grand total 100 (3065) 100 (11 745) — — 100 (2226) 100 (8435) — — 
Severe         
 No offspring 66 (209) 50 (631) 1.5 1.33–1.67 72 (364) 65 (1300) 1.2 1.09–1.27 
 Offspring 34 (106) 50 (630) 0.8 0.68–0.84 28 (142) 35 (711) 0.8 0.76–0.92 
 Grand total 100 (315) 100 (1261) — — 100 (506) 100 (2011) — — 
TOF         
 No offspring 59 (101) 42 (284) 1.4 1.22–1.66 71 (185) 60 (611) 1.2 1.09–1.31 
 Offspring 41 (69) 58 (395) 0.7 0.58–0.85 29 (74) 40 (408) 0.7 0.58–0.88 
 Grand total 100 (170) 100 (679) — — 100 (259) 100 (1019) — — 
TGA         
 No offspring 65 (62) 58 (217) 1.1 0.95–1.33 67 (126) 65 (483) 1.0 0.92–1.16 
 Offspring 35 (33) 42 (157) 0.8 0.61–1.12 33 (61) 35 (258) 0.9 0.75–1.18 
 Grand total 100 (95) 100 (374) — — 100 (187) 100 (741) — — 
UVH         
 No offspring 92 (44) 61 (122) 1.5 1.31–1.73 87 (45) 79 (167) 1.1 0.97–1.25 
 Offspring 8 (4) 39 (78)) 0.2 0.08–0.56 13 (7) 21 (45) 0.6 0.30–1.32 
 Grand total 100 (48) 100 (200) — — 100 (52) 100 (212) — — 

All includes simple, severe, and miscellaneous defects. —, not applicable.

In the current study, we examined social outcomes after CHS using comprehensive nationwide Finnish databases. We found that patients had significantly lower rates of education, employment, and marriage and a higher retirement rate than the general population.

Our previous patient-reported study on the quality of life after CHS revealed that patients had similar education levels and lived in a steady relationship as often as the general population, with reportedly higher employment rates.4  In the current study, however, we used national databases to obtain a more objective measure of outcome. This allowed us to include a larger proportion of the patients and to avoid the potential participation bias associated with survey studies.79 

Previous studies have revealed impaired neurodevelopmental outcomes, with subsequent learning disabilities and poor academic performance, after CHS, particularly among patients with cyanotic defects.11,12  Our results reflected previous findings, with lower undergraduate or higher education rates among patients both with simple and severe defects, even when accounting for mental disabilities. However, patients reassuringly reached similar high school and vocational education rates as the general population. In contrast, in our previous survey-based study, patients, particularly those with simple defects, reported higher-than-expected university-level education rates, which potentially stemmed from a possible participation bias skewed by a higher proportion of highly educated and socioeconomically advantaged survey responders compared with nonresponders.4,79 

Patients had lower employment rates compared with the general population. This was especially true for patients with cyanotic defects, reflecting results from a previous study.13  These findings were most likely explained by the significantly higher retirement rate among the patient population, possibly secondary to late morbidity. Interestingly, male patients with severe defects, but not those with simple defects, had higher unemployment rates compared with the general population. Patients with complex defects often have a higher risk for late cardiac and noncardiac sequelae, possibly reducing their capacity or motivation for work. Also, lower education rates are generally associated with a higher risk of unemployment and physically demanding professions, which would explain the lower employment rate and higher retirement rate among patients.14,15  In our previous survey study, patients reported higher-than-expected employment rates.4  Again, this discrepancy might stem from nonresponse bias, highlighting the importance of using both objective register-based data and subjective measures in the assessment of socioeconomic outcomes.9 

Patients were, on average, less likely to be married and have progeny compared with the general population. The ratio of male to female marriage rates was similarly low between the patients and general population. All female patients with UVH in Finland are advised to avoid pregnancy because of the associated health risks and receive education on effective contraceptive methods in the Helsinki University Central Hospital adult CHD clinic. Similar advice is provided to patients with symptomatic heart failure. Finally, patients on warfarin treatment of implanted mechanical valves or for other reasons have a strict contraceptive protocol and must have a specifically planned pregnancy in terms of their anticoagulation. These measures are the most likely reason why male patients with UVH were more likely to have offspring compared with corresponding female patients. All in all, patients with severe defects seemed less likely in general to be married or have children, which could partly reflect their lower education and employment rates and thus lower social recognition among this population.16,17  These results reflect those of our previous survey-based study.4 

First, disadvantaged family backgrounds have been associated with lower education levels in Finland, and parental socioeconomic status has been found to have direct association with outcomes after CHS.1820  In the current study, we did not assess parental socioeconomic status, however, which could have offered more insight into the socioeconomic outcome of the patients. Second, although the purpose of this study was to assess objective postoperative quality of life, patient-reported subjective outcomes are also important in assessing postoperative results and were not a part of this study. Third, both cardiac and noncardiac comorbidities are common among patients who undergo CHS and likely have significant impacts on their social outcomes and quality of life. We, however, did not have data available on the comorbid conditions of patients, and could thus not include this important variable in our analyses. Fourth, because of the rarity of specific cardiac defects, such as UVH, the relatively low number of subjects in these subgroups may have reduced the power of the statistical analyses. Finally, the potential for human error and incorrect information must always be acknowledged with large national database studies.

Despite the major advances in surgical results of CHDs patients appear to remain socially disadvantaged compared with the general population, as evidenced by lower education, employment, and marital rates and higher retirement rates. The current results reveal some discrepancy with our previous survey-based study, which could be secondary to the elapsed time between the studies and thus an aged patient population, but the current results also highlight the importance of potential participant biases associated with survey studies. Numerous studies have revealed a causal relationship between lower socioeconomic status and poor health outcomes, which raises concern for the long-term well-being of patients after CHS.21,22  These results underscore the importance of follow-up of patients after CHS, with particular focus on both physical and neurodevelopmental outcomes, to secure good academic and subsequent socioeconomic and health outcomes among these patients.

We thank Statistics Finland for assistance in obtaining the social data of the patients in this study.

Dr Raissadati gathered and analyzed the data, drafted the initial manuscript, and reviewed and revised the manuscript; Dr Knihtilä gathered and analyzed the data, participated in drafting the initial manuscript, and reviewed and revised the manuscript; Dr Pätilä maintained the congenital heart disease database used in the study, analyzed the data, and reviewed and revised the manuscript; Dr Nieminen designed and maintained the congenital heart disease database used in the study, analyzed the data, and reviewed and revised the manuscript; Dr Jokinen coordinated and supervised the study, analyzed the data, and critically reviewed and revised the manuscript; and all authors conceptualized and designed the study and approved the final manuscript as submitted.

FUNDING: No external funding.

CHD

congenital heart defect

CHS

congenital heart surgery

CI

confidence interval

PDA

patent ductus arteriosus

RR

risk ratio

TGA

transposition of the great arteries

TOF

tetralogy of Fallot

UVH

univentricular heart

1
Spector
LG
,
Menk
JS
,
Knight
JH
, et al
.
Trends in long-term mortality after congenital heart surgery
.
J Am Coll Cardiol
.
2018
;
71
(
21
):
2434
2446
2
Raissadati
A
,
Nieminen
H
,
Haukka
J
,
Sairanen
H
,
Jokinen
E
.
Late causes of death after pediatric cardiac surgery: a 60-year population-based study
.
J Am Coll Cardiol
.
2016
;
68
(
5
):
487
498
3
Raissadati
A
,
Nieminen
H
,
Jokinen
E
,
Sairanen
H
.
Progress in late results among pediatric cardiac surgery patients: a population-based 6-decade study with 98% follow-up
.
Circulation
.
2015
;
131
(
4
):
347
353
4
Nieminen
H
,
Sairanen
H
,
Tikanoja
T
, et al
.
Long-term results of pediatric cardiac surgery in Finland: education, employment, marital status, and parenthood
.
Pediatrics
.
2003
;
112
(
6 pt 1
):
1345
1350
5
Geyer
S
,
Norozi
K
,
Buchhorn
R
,
Wessel
A
.
Chances of employment in women and men after surgery of congenital heart disease: comparisons between patients and the general population
.
Congenit Heart Dis
.
2009
;
4
(
1
):
25
33
6
Van Bulck
L
,
Luyckx
K
,
Goossens
E
, et al
.
Patient-reported outcomes of adults with congenital heart disease from eight European countries: scrutinising the association with healthcare system performance
.
Eur J Cardiovasc Nurs
.
2019
;
18
(
6
):
465
473
7
Lorant
V
,
Demarest
S
,
Miermans
PJ
,
Van Oyen
H
.
Survey error in measuring socio-economic risk factors of health status: a comparison of a survey and a census
.
Int J Epidemiol
.
2007
;
36
(
6
):
1292
1299
8
Strandhagen
E
,
Berg
C
,
Lissner
L
, et al
.
Selection bias in a population survey with registry linkage: potential effect on socioeconomic gradient in cardiovascular risk
.
Eur J Epidemiol
.
2010
;
25
(
3
):
163
172
9
Tolonen
H
,
Dobson
A
,
Kulathinal
S
;
WHO MONICA Project
.
Effect on trend estimates of the difference between survey respondents and non-respondents: results from 27 populations in the WHO MONICA Project
.
Eur J Epidemiol
.
2005
;
20
(
11
):
887
898
10
Nieminen
HP
,
Jokinen
EV
,
Sairanen
HI
.
Late results of pediatric cardiac surgery in Finland: a population-based study with 96% follow-up
.
Circulation
.
2001
;
104
(
5
):
570
575
11
Marino
BS
,
Lipkin
PH
,
Newburger
JW
, et al;
American Heart Association Congenital Heart Defects Committee, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, and Stroke Council
.
Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association
.
Circulation
.
2012
;
126
(
9
):
1143
1172
12
Mulkey
SB
,
Swearingen
CJ
,
Melguizo
MS
, et al
.
Academic proficiency in children after early congenital heart disease surgery
.
Pediatr Cardiol
.
2014
;
35
(
2
):
344
352
13
Kamphuis
M
,
Vogels
T
,
Ottenkamp
J
,
Van Der Wall
EE
,
Verloove-Vanhorick
SP
,
Vliegen
HW
.
Employment in adults with congenital heart disease
.
Arch Pediatr Adolesc Med
.
2002
;
156
(
11
):
1143
1148
14
van Zon
SKR
,
Reijneveld
SA
,
Mendes de Leon
CF
,
Bültmann
U
.
The impact of low education and poor health on unemployment varies by work life stage [published correction appears in Int J Public Health. 2019;64(5):809–812]
.
Int J Public Health
.
2017
;
62
(
9
):
997
1006
15
McKee-Ryan
F
,
Song
Z
,
Wanberg
CR
,
Kinicki
AJ
.
Psychological and physical well-being during unemployment: a meta-analytic study
.
J Appl Psychol
.
2005
;
90
(
1
):
53
76
16
Cherlin
A
.
Demographic trends in the united states: a review of research in the 2000s
.
J Marriage Fam
.
2010
;
72
(
3
):
403
419
17
Sweeney
MM
.
Two decades of family change: the shifting economic foundations of marriage
.
Am Sociol Rev
.
2002
;
67
(
1
):
132
147
18
Kallio
JM
,
Kauppinen
TM
,
Erola
J
.
Cumulative socio-economic disadvantage and secondary education in Finland
.
Eur Sociol Rev
.
2016
;
32
(
5
):
649
661
19
Bucholz
EM
,
Sleeper
LA
,
Newburger
JW
.
Neighborhood socioeconomic status and outcomes following the Norwood procedure: an analysis of the pediatric heart network single ventricle reconstruction trial public data set
.
J Am Heart Assoc
.
2018
;
7
(
3
):
e007065
20
Xiang
L
,
Su
Z
,
Liu
Y
, et al
.
Effect of family socioeconomic status on the prognosis of complex congenital heart disease in children: an observational cohort study from China
.
Lancet Child Adolesc Health
.
2018
;
2
(
6
):
430
439
21
Lumme
S
,
Manderbacka
K
,
Karvonen
S
,
Keskimäki
I
.
Trends of socioeconomic equality in mortality amenable to healthcare and health policy in 1992-2013 in Finland: a population-based register study
.
BMJ Open
.
2018
;
8
(
12
):
e023680
22
Mackenbach
JP
,
Stirbu
I
,
Roskam
AJ
, et al;
European Union Working Group on Socioeconomic Inequalities in Health
.
Socioeconomic inequalities in health in 22 European countries [published correction appears in N Engl J Med. 2008;359(12):e14]
.
N Engl J Med
.
2008
;
358
(
23
):
2468
2481

Competing Interests

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

Supplementary data