Postnatal ductal closure is stimulated by rising oxygen tension and withdrawal of vasodilatory mediators (prostaglandins, nitric oxide, adenosine) and by vasoconstrictors (endothelin-1, catecholamines, contractile prostanoids), ion channels, calcium flux, platelets, morphologic maturity, and a favorable genetic predisposition. A persistently patent ductus arteriosus (PDA) in preterm infants can have clinical consequences. Decreasing pulmonary vascular resistance, especially in extremely low gestational age newborns, increases left-to-right shunting through the ductus and increases pulmonary blood flow further, leading to interstitial pulmonary edema and volume load to the left heart. Potential consequences of left-to-right shunting via a hemodynamically significant patent ductus arteriosus (hsPDA) include increased risk for prolonged ventilation, bronchopulmonary dysplasia, necrotizing enterocolitis or focal intestinal perforation, intraventricular hemorrhage, and death. In the last decade, there has been a trend toward less aggressive treatment of PDA in preterm infants. However, there is a subgroup of infants who will likely benefit from intervention, be it pharmacologic, interventional, or surgical: (1) prophylactic intravenous indomethacin in highly selected extremely low gestational age newborns with PDA (<26 + 0/7 weeks’ gestation, <750 g birth weight), (2) early targeted therapy of PDA in selected preterm infants at particular high risk for PDA-associated complications, and (3) PDA ligation, catheter intervention, or oral paracetamol may be considered as rescue options for hsPDA closure. The impact of catheter-based closure of hsPDA on clinical outcomes should be determined in future prospective studies. Finally, we provide a novel treatment algorithm for PDA in preterm infants that integrates the several treatment modalities in a staged approach.

The fetal ductus arteriosus (DA) diverts cardiac output away from the lungs toward the placenta to support systemic oxygenation. After delivery, circulatory adaptation depends on DA closure within the first days of life. In preterm infants, DA closure frequently fails to occur because of immature structures and responses to constrictive mechanisms. A persistently patent ductus arteriosus (PDA) can have clinical consequences depending on the degree of left-to-right shunting and ductal steal. The increase in pulmonary blood flow in the setting of prematurity can lead to pulmonary edema, respiratory deterioration, and diminished gastrointestinal, renal, and cerebral blood flow.1  The incidence of PDA (ie, an open DA beyond the first 3 postnatal days) exceeds 50% in preterm infants ≤28 weeks’ gestational age.2  Although spontaneous closure rates in these infants are high, historical practice has led to medical or surgical therapy in 60% to 70% of preterm infants <28 weeks’ gestational age.3  However, because of high spontaneous DA closure rates in these infants, there has been a shift toward less frequent and invasive treatment in the last decade (watchful waiting without intervention).4  Nevertheless, the mid- and long-term consequences of prolonged ductal patency are still unclear.510 

During embryogenesis, paired pharyngeal arch arteries (PAAs) form and connect the heart and dorsal aorta. The DA develops from the distal portion of the left sixth PAA, which is ultimately composed of endothelium derived from the second heart field and smooth muscle derived from neural crest progenitor cells.11  Abnormal PAA development can cause a variety of congenital heart defects, including PDA.

Although PDA is generally considered a sporadic defect impacted by extrinsic factors, genetic studies have identified syndromes that frequently manifest PDA (Table 1).12  Still, only 10% of PDA cases are associated with chromosomal abnormalities.13  Therefore, single-nucleotide polymorphisms associated with nonsyndromic PDA may be more informative regarding genetic regulation of the more common sporadic cases of PDA14,15  (Table 1).

TABLE 1

Genetic Factors Associated With PDA

Human Syndromes (Gene)Nonsyndromic SNPs (Accession Number)
22q11.2 deletion Increased Risk of PDA 
Char (TFAP2B TFAP2B (rs987237) 
Cantu (ABCC9, KCNJ8 TRAF1 (rs1056567) 
Noonan (PTPN11 AGTR1 (rs5186) 
Mowat-Wilson (SMADIP1Decreased Risk of PDA 
DiGeorge (TBX1 PTGIS (rs493694, rs693649) 
Holt-Oram (TBX5 ESR1 (rs2234693) 
Loeys-Dietz (TGFBR1 and TGFBR2 IFN-γ (rs2430561) 
Rubinstein-Taybi (CREBP 
Periventricular heterotopia (FLNA 
Human Syndromes (Gene)Nonsyndromic SNPs (Accession Number)
22q11.2 deletion Increased Risk of PDA 
Char (TFAP2B TFAP2B (rs987237) 
Cantu (ABCC9, KCNJ8 TRAF1 (rs1056567) 
Noonan (PTPN11 AGTR1 (rs5186) 
Mowat-Wilson (SMADIP1Decreased Risk of PDA 
DiGeorge (TBX1 PTGIS (rs493694, rs693649) 
Holt-Oram (TBX5 ESR1 (rs2234693) 
Loeys-Dietz (TGFBR1 and TGFBR2 IFN-γ (rs2430561) 
Rubinstein-Taybi (CREBP 
Periventricular heterotopia (FLNA 

PDA is associated with several genetic syndromes. Several SNPs have also been associated with cases of nonsyndromic PDA. ABCC9, ATP binding cassette subfamily C member 9; AGTR1, angiotensin II receptor type 1; CREBP, cyclic adenosine monophosphate–response element binding protein; ESR1, estrogen receptor 1; FLNA, filamin A; IFN-γ, interferon-γKCNJ8, potassium inwardly rectifying channel subfamily J member 8; PTGIS, prostaglandin I2 synthase; PTPN11, protein tyrosine phosphatase nonreceptor type 11; SMADIP1, SMAD-interacting protein 1; SNP, single-nucleotide polymorphism; TBX1, T-box transcription factor 1; TBX5, T-box transcription factor 5; TFAP2B, transcription factor AP-2-β; TGFBR1, transforming growth factor-β receptor type 1; TGFBR2, transforming growth factor-β receptor type 1; TRAF1, tumor necrosis factor receptor associated factor 1.

The fetal DA has intrinsic tone and requires dilating factors (nitric oxide, prostaglandin E2, adenosine, atrial natriuretic peptide, carbon monoxide, and potassium channels) to maintain its patency.16  At birth, DA closure occurs by (1) functional constriction and (2) anatomic remodeling resulting in formation of the ligamentum arteriosum. Initial DA constriction occurs as pulmonary vascular resistance (PVR) falls, systemic vascular resistance increases, circulating prostaglandin E (PGE) levels decline, and respiration is initiated, triggering a sharp increase in arterial oxygen tension. Complete closure is achieved by a combination of physiologic, molecular, and structural factors (Fig 1A).1,1721 

FIGURE 1

Factors affecting postnatal DA closure and preterm PDA. A and B, Postnatal DA closure (A) and preterm DA patency (B) are regulated by a combination of molecular, physiologic, and structural factors. Of note, several studies have identified distinct variants in CYP2C9*2 that are associated with failure of PDA closure in response to indomethacin.14,15  cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; O2, oxygen.

FIGURE 1

Factors affecting postnatal DA closure and preterm PDA. A and B, Postnatal DA closure (A) and preterm DA patency (B) are regulated by a combination of molecular, physiologic, and structural factors. Of note, several studies have identified distinct variants in CYP2C9*2 that are associated with failure of PDA closure in response to indomethacin.14,15  cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; O2, oxygen.

Close modal

Spontaneous PDA closure occurs less frequently in preterm infants at <28 weeks’ gestation. The time it takes to achieve closure is inversely proportional to gestational age at birth, with some vessels requiring months to years to close.22  PDA in preterm infants is considered the result of generalized immaturity of the smooth muscle and biochemical oxygen sensing mechanisms (Fig 1B). Indeed, the preterm ductus is transcriptionally distinct from term vessels.2325 

The preterm DA is also structurally different from mature vessels. The absence or rudimentary formation of intimal cushions in the preterm DA is associated with failure to close.13  Similarly, preterm vessels have fewer layers of contractile smooth muscle cells and lack vasa vasorum.26  This can result in partial postnatal constriction without the ischemia-driven remodeling critical for permanent closure.

Preterm DAs are also subjected to extrinsic factors that make vessel closure more difficult (Fig 1B). Echocardiographic studies reveal that preterm DAs exposed to sustained bidirectional, right-to-left, or low-velocity blood flow were more likely to remain patent and were resistant to pharmacologic therapy,27,28  thus highlighting the role of hemodynamic forces and PVR in modulating DA tone. In addition, studies on the role of platelets have yielded conflicting results. In some, an association between low platelet number and delayed spontaneous or pharmacologic PDA closure was identified in very preterm infants2932 ; however, platelet transfusions failed to accelerate PDA closure in thrombocytopenic premature infants.33  In other studies, it was argued that platelet function, not number, was the key regulator of preterm PDA status.34,35 

A left-to-right ductal shunt causes increased pulmonary blood flow and ductal steal from the systemic circulation and thus can have adverse effects on premature infants,1  although a causal relationship is not well defined.36 

The pathologic effects of excess left-to-right ductal shunting, namely increased lung fluid, decreased pulmonary compliance, and impaired oxygenation, is associated with increased need for respiratory support and mechanical ventilation, contributing to lung injury.37 

PDA poses the risk for hemorrhagic pulmonary edema due to pulmonary overcirculation, redistribution of hydraulic pressures to downstream capillary filtration sites, left-sided cardiac dysfunction, and consecutive postcapillary (venous) pulmonary hypertension.37  The downstream cardiopulmonary effects of a large PDA include left atrium (LA) and left ventricle (LV) overload leading to LA and LV dilation. Initial hyperdynamic systolic function later develops into decreased LV systolic function. In a large hemodynamically significant patent ductus arteriosus (hsPDA) with unrestrictive pulmonary artery (PA) flow, PA pressure is elevated to at least a systemic level, increasing flow and/or shear stress injury, endothelial cell dysfunction, and eventual pulmonary hypertension38,39  with increased PVR. In the acute phase of PDA exposure, the incidence of serious pulmonary hemorrhage in infants weighing <1000 g is 10%.40  Prophylaxis with indomethacin reduced the risk for serious pulmonary hemorrhage by 35% over the first week of life; 80% of this beneficial effect was explained by reduced risk for PDA.41  Similarly, infants at <29 weeks’ gestation who were selectively treated prophylactically by 6 hours of age had less pulmonary hemorrhage than controls (2% vs 21%).42 

Sustained PDA exposure may contribute to bronchopulmonary dysplasia (BPD).4345  However, an association between PDA and BPD has not been found in other studies,8,22,46  suggesting the need for controlled studies. In the Patent Ductus Arteriosus: To Leave It Alone or Respond and Treat Early (PDA-TOLERATE) trial, early versus late PDA treatment was compared in a prospective multicenter randomized controlled trial (RCT). By prespecified secondary analysis, there was no difference in the development of BPD (relative risk [RR] 0.94; 95% confidence interval [CI] 0.70–1.3) or BPD or death before 36 weeks (RR 1.00; 95% CI 0.80–1.3) between the early treatment arm and the conservative treatment arm.47  However, among 137 infants screened for the trial, but not enrolled because of lack of physician equipoise, the combined outcome of home oxygen or death for treated infants was lower than that in the enrolled cohort.48 

The binary variable of PDA versus no PDA may not be as important as the duration of exposure. In infants at <28 weeks’ gestation surviving for at least 7 days, the risk of BPD or death increased in infants after 7 days of exposure to a moderate-to-large PDA shunt (odds ratio 2.12; 95% CI 1.04–4.32).49  For the singular outcome of BPD, exposure to a PDA was required for at least 14 days (odds ratio 4.09; 95% CI 2.22–7.22).49 

Intraventricular hemorrhage (IVH), periventricular leukomalacia, and school-aged performance are important outcomes associated with prematurity. The role of PDA in these outcomes versus the effect of PDA treatments is hard to tease apart. The Trial of Indomethacin Prophylaxis in Preterms (TIPP) revealed decreased IVH rates after prophylactic indomethacin but without long-term benefit.40  The data for prophylactic ibuprofen or paracetamol are less compelling.50,51  Prophylactic surgical ligation provides no benefit in terms of IVH,52  and surgical ligation itself may be an independent risk factor for poor neurodevelopmental outcome.53,54 

PDA decreases regional cerebral oxygenation saturation and increases fractional tissue oxygen extraction in preterm infants.55  Follow-up term-equivalent MRIs reveal decreased cerebellar volumes in infants requiring surgical ligation.56 

Infants treated with pharmacotherapy or ligation had worse neurodevelopmental outcomes at 2 to 3 years of age than infants without PDA or without treatment of PDA; however, no adjustments were made for postnatal confounders, such as necrotizing enterocolitis (NEC).57  In one long-term study of preterm infants born in the 1980s, no difference in cognitive development or behavior was found between infants with and without a PDA at ages 3, 8, and 18 years.58  This cohort was likely healthier and more mature than the infants at 22 to 26 weeks’ gestation of today’s NICUs; however, 18-year follow-up is unusual, and these findings should be considered in context.

Diminished intestinal blood flow in the setting of a ductal shunt may predispose preterm infants to NEC or focal intestinal perforation (FIP). An RCT from 1989 revealed decreased NEC risk in infants undergoing prophylactic surgical ligation (8% vs 30%)52 ; however, most RCTs on prophylactic pharmacotherapy have revealed no difference in NEC rates.50,51  Simultaneous exposure to corticosteroids and indomethacin is a known risk for intestinal injury. However, indomethacin for IVH prophylaxis after antenatal steroid exposure was not associated with FIP in extremely low gestational age newborns (ELGANs), although indomethacin for treatment of symptomatic PDA was.59  Although there are few data on feeding practices in the presence of PDA, early feeding during indomethacin treatment may improve the time to reach full feedings,60  may preserve postprandial mesenteric perfusion,61  and is not associated with increased risk of NEC or FIP.6062 

There is no consensus on clinical or sonographic criteria that define the need for PDA closure. The determinants of risk for hsPDA we propose are shown in Fig 2. The gold standard for diagnosing a PDA and for assessing its hemodynamic significance is transthoracic echocardiography63,64 ; it not only allows for visualization of the ductus and determination of its size but also identifies shunt direction, systolic-diastolic pattern and velocity, and ventricular and atrial volumes and function. A ductal diameter ≥1.5 mm during the first hours of life is predictive of development of a symptomatic DA in infants ≤28 weeks’ gestational age65,66 ; this finding provides a rationale to consider early targeted treatment in selected infants.42,67  Several other echocardiographic variables have been used to assess the significance of a PDA: an LA-to-aortic root ratio ≥1.4, LV enlargement, increased mean and diastolic PA flow velocities, and a reversed mitral E/A ratio (echocardiographical PW-Doppler variable of early versus late filling as surrogate for diastolic LV function) are reported indicators for pulmonary overcirculation (high Qp/Qs [ratio of pulmonary/systemic blood flow]) and subsequent increased left heart volume load64 ; however, these measurements depend on preload and have interobserver variability. In addition, retrograde diastolic flow in the descending aorta and low-antegrade or retrograde diastolic flow in systemic arteries (eg, anterior cerebral artery and renal and mesenteric arteries) indicate systemic hypoperfusion and ductal steal (Fig 2). Additional echocardiographic markers that indicate an hsPDA shunt are reviewed elsewhere.68  The diagnosis of hsPDA should be based on a combination of echocardiographic and clinical variables and should incorporate individual risk factors for adverse outcome, such as gestational age, chronological age, and comorbidities. Plasma and urinary biomarkers1  and assessments of cerebral and abdominal tissue oxygenation by near-infrared spectroscopy might help identify patients with compromised hemodynamic status69,70  because the existing sonographic criteria cannot clearly define the need for PDA closure.

FIGURE 2

Determinants of risk for preterm infants with an hsPDA. AAO, ascending aorta; ACA, anterior cerebral artery; CPAP, continuous positive airway pressure; CW, continuous wave; DAO, descending aorta; Fio2, fraction of inspired oxygen; HFNC, high-flow nasal cannula; ID, inner diameter; LA/Ao, left atrium to aortic root diameter ratio; LPA, left pulmonary artery; LVEF, left ventricular ejection fraction; MPA, mean pulmonary artery; MV, mechanical ventilation; NIRS, near-infrared spectroscopy; NIV, noninvasive ventilation; PEEP, positive end-expiratory pressure; PIP, positive inspiratory pressure; PLAX, parasternal short axis; PSAX, parasternal short axis; RI, resistance index; Spo2, pulse oxygen saturation; Vmax, maximum velocity.

FIGURE 2

Determinants of risk for preterm infants with an hsPDA. AAO, ascending aorta; ACA, anterior cerebral artery; CPAP, continuous positive airway pressure; CW, continuous wave; DAO, descending aorta; Fio2, fraction of inspired oxygen; HFNC, high-flow nasal cannula; ID, inner diameter; LA/Ao, left atrium to aortic root diameter ratio; LPA, left pulmonary artery; LVEF, left ventricular ejection fraction; MPA, mean pulmonary artery; MV, mechanical ventilation; NIRS, near-infrared spectroscopy; NIV, noninvasive ventilation; PEEP, positive end-expiratory pressure; PIP, positive inspiratory pressure; PLAX, parasternal short axis; PSAX, parasternal short axis; RI, resistance index; Spo2, pulse oxygen saturation; Vmax, maximum velocity.

Close modal

Intravenous indomethacin has been the therapeutic mainstay since pharmacotherapy for PDA was introduced to clinical practice. Over the past decade, there has been substantial interest in new regimens and pharmaceutical choices for PDA closure. RCTs from the 1980s were focused on prophylactic, early (<24 hours), or symptomatic treatment, typically between 2 and 6 days after birth.1  In additional studies, third and fourth treatment categories are now considered: asymptomatic infants <72 hours after birth42,64  or late symptomatic treatment after watchful waiting.71  New formulations, such as oral and intravenous ibuprofen and oral and intravenous paracetamol, broaden but also complicate the landscape once dominated by indomethacin (Table 2). Additionally, use of cyclooxygenase (COX) inhibitors is declining in favor of watchful waiting.4,72 

TABLE 2

Current Pharmacologic Treatment Strategies for PDA in the Preterm Infant

Drug(s) of ChoiceDosingCommentsProsCons
Targeted prophylaxis in at-risk infants (6–24 h after birth) Indomethacina 3 × 0.1 mg/kg per dose IV every 12 hb (single-dose prophylaxis may be considered) Do not start treatment within the first 6 h of life. It is recommended not to use ibuprofen (IV) in the first 24 h of life (increased risks for renal failure, gastrointestinal hemorrhage, and possibly PPHN) Prevention of IVH (prophylaxis); risk reduction of pulmonary hemorrhage; association with beneficial neurodevelopmental outcome in boys Unnecessary treatment of many infants without an hsPDA 
Early targeted treatment of infants with PDA (<6 d after birth) Indomethacina 1 × 0.2 mg/kg per dose IV, followed by 2 × 0.1 mg/kg per dose every 12 hb It is recommended not to use ibuprofen (IV) in the first 24 h of life (increased risks for renal failure, gastrointestinal hemorrhage, and possibly PPHN). Risk reduction of pulmonary hemorrhage; possible risk reduction of in-hospital mortality Unnecessary treatment of some infants who have a small PDA that is hemodynamically not significant; unclear effects on outcome 
 Ibuprofenc 10 mg/kg per dose PO or IV, followed by 5 mg/kg at 24 and 48 h of treatment start — — — 
Treatment in symptomatic infants with hsPDA (≥6 d after birth) Ibuprofenc 10 mg/kg per dose PO or IV, followed by 5 mg/kg at 24 and 48 h of treatment start Higher doses might be considered. Treatment only in infants with hsPDA No evidence for beneficial long-term outcome if administered late (>6–14 d); might still be associated with adverse outcome (eg, BPD) due to a longer duration of a significant shunt 
Rescue treatment Paracetamol 15 mg/kg per dose PO or IV every 6 h for 3–7 d Might be attempted in selected infants after failed standard COX inhibitor treatment; can also be applied earlier if contraindications for standard COX inhibitor use are present Might prevent the use of more invasive measures, such as ligation or catheter intervention; no known renal or gastrointestinal side effects Unclear effect on neurodevelopmental outcome 
Drug(s) of ChoiceDosingCommentsProsCons
Targeted prophylaxis in at-risk infants (6–24 h after birth) Indomethacina 3 × 0.1 mg/kg per dose IV every 12 hb (single-dose prophylaxis may be considered) Do not start treatment within the first 6 h of life. It is recommended not to use ibuprofen (IV) in the first 24 h of life (increased risks for renal failure, gastrointestinal hemorrhage, and possibly PPHN) Prevention of IVH (prophylaxis); risk reduction of pulmonary hemorrhage; association with beneficial neurodevelopmental outcome in boys Unnecessary treatment of many infants without an hsPDA 
Early targeted treatment of infants with PDA (<6 d after birth) Indomethacina 1 × 0.2 mg/kg per dose IV, followed by 2 × 0.1 mg/kg per dose every 12 hb It is recommended not to use ibuprofen (IV) in the first 24 h of life (increased risks for renal failure, gastrointestinal hemorrhage, and possibly PPHN). Risk reduction of pulmonary hemorrhage; possible risk reduction of in-hospital mortality Unnecessary treatment of some infants who have a small PDA that is hemodynamically not significant; unclear effects on outcome 
 Ibuprofenc 10 mg/kg per dose PO or IV, followed by 5 mg/kg at 24 and 48 h of treatment start — — — 
Treatment in symptomatic infants with hsPDA (≥6 d after birth) Ibuprofenc 10 mg/kg per dose PO or IV, followed by 5 mg/kg at 24 and 48 h of treatment start Higher doses might be considered. Treatment only in infants with hsPDA No evidence for beneficial long-term outcome if administered late (>6–14 d); might still be associated with adverse outcome (eg, BPD) due to a longer duration of a significant shunt 
Rescue treatment Paracetamol 15 mg/kg per dose PO or IV every 6 h for 3–7 d Might be attempted in selected infants after failed standard COX inhibitor treatment; can also be applied earlier if contraindications for standard COX inhibitor use are present Might prevent the use of more invasive measures, such as ligation or catheter intervention; no known renal or gastrointestinal side effects Unclear effect on neurodevelopmental outcome 

IV, intravenously; PO, per os (orally); PPHN, persistent pulmonary hypertension of the neonate; —, not applicable.

a

Infuse over at least 30 min.

b

Last indomethacin dose might be omitted if echocardiography suggests pressure restrictive (closing) PDA.

c

Oral ibuprofen should be followed by 2 mL/kg water or milk (hyperosmolarity).

Pharmaceutical strategies generally are focused on inhibiting prostaglandin synthesis. COX inhibitors, such as indomethacin or ibuprofen, are the mainstays of treatment. Although paracetamol, which is thought to act at the peroxidation site of COX, has gained attention over the past decade,51  it appears less effective than indomethacin or ibuprofen in extreme prematurity.73,74  COX inhibitors are less effective in severely preterm infants, likely because of maturational factors in response to prostaglandin inhibition and prevention of intimal cushion formation.1 

Ibuprofen has less detrimental effects on end-organ perfusion than indomethacin.1,75  A recent meta-analysis of 9 trials, comparing prophylactic ibuprofen (oral or intravenous) with a placebo or no treatment, revealed that ibuprofen decreases the risk of PDA on day 3 to 4 of life when it is given at <24 hours of life (RR 0.39; 95% CI 0.31–0.48).51  Prophylactic ibuprofen also decreased the need for rescue treatment and surgical ligation (RR 0.17 [95% CI 0.11–0.26] and RR 0.46 [95% CI 0.22–0.96], respectively). Despite a trend toward diminished grade 3 or 4 IVH risk and a clearer risk for increased oliguria, compared with a placebo or no treatment, no difference was noted for mortality, any IVH, or chronic lung disease (CLD) with prophylactic ibuprofen.51 

As a treatment strategy for symptomatic PDA, 3 doses of intravenous ibuprofen were compared with a placebo (2 studies) in a 2018 Cochrane review, and a superior rate of closure was found with ibuprofen (RR 0.62; 95% CI 0.44–0.86).76  On the basis of 24 studies, ibuprofen in either an oral or intravenous route appears to be as effective as indomethacin, with an improved safety profile (reduced ventilator days and oliguria). Oral ibuprofen is preferable to indomethacin in terms of risk for NEC (RR 0.41; 95% CI 0.23–0.73).76 

In terms of efficacy of hsPDA closure, a 2018 network meta-analysis favored high-dose oral ibuprofen over other agents.32  However, a comparative effectiveness study of indomethacin, ibuprofen, and paracetamol in infants at <28 weeks’ gestation favored indomethacin in this regard73 ; rectal ibuprofen may also be effective.77  Newer strategies to disrupt prostaglandin signaling include combined COX inhibitor treatments78,79  or the potential use of compounds that could selectively inhibit PGE receptors.80  To summarize, on the basis of meta-analyses and the original TIPP trial,81  although intravenous ibuprofen is an effective agent for prophylactic use, intravenous indomethacin is favored because of reduction in IVH incidence. For treatment strategies (as opposed to prophylaxis), ibuprofen and indomethacin are likely equivalent (Table 2), although the safety profile of ibuprofen is superior.

Paracetamol is an attractive option in cases in which COX inhibitors are contraindicated or ineffective. A recent systematic review of studies comparing oral paracetamol with intravenous ibuprofen (559 infants), intravenous indomethacin (277 infants), and a placebo (80 infants) identified moderate-quality evidence suggesting that paracetamol is as effective as ibuprofen, with less gastrointestinal bleeding and lower serum creatinine levels.50  In contrast, the initial constriction rate was only 27% with paracetamol, that is, lower than with either indomethacin and ibuprofen73 ; of note, this trial (PDA-TOLERATE) was conducted in infants with an average gestation of 26 weeks, unlike more mature infants studied in recent meta-analyses.73  Moreover, a randomized trial on the efficiency of treatment of hsPDA by using either intravenous paracetamol or intravenous indomethacin in 37 very low birth weight (VLBW) infants (<32 weeks’ gestation, ≤1500 g, first 21 postnatal days) confirmed the aforementioned findings: the primary hsPDA closure rate with intravenous paracetamol was much lower (5.9%; 1 of 17) than the success rate with intravenous indomethacin (55%; 11 of 20), so more patients treated with paracetamol underwent transcatheter PDA closure (47% vs 15%).82 

The TIPP trial revealed a reduction in IVH incidence with the use of indomethacin as prophylaxis but failed to confirm a benefit on a composite outcome of survival and neurodevelopment at 18 months.40  A longer follow-up study at 3 to 8 years revealed a modest sex effect favoring prophylactic treatment in boys.83  Spontaneous closure rate varies substantially by center and is an important factor when deciding to use prophylaxis.47  Given that prophylactic ibuprofen is less efficient in preventing grades 3 and 4 IVH, indomethacin is usually considered the drug of choice for prophylaxis in selected infants.51  Additionally, longer prophylactic indomethacin courses decreased moderate-to-severe white matter injury in a prospective brain MRI study.84  However, given the high spontaneous closure rate, prophylaxis may only be justifiable for certain subgroups (see below). There are insufficient data on paracetamol use for hsPDA prophylaxis and risk of IVH (a small prospective study did not reveal a benefit on severe IVH).85  Prophylactic use of indomethacin, ibuprofen, or paracetamol has no effect on NEC,40,50,86  and studies on the according BPD risk had ambiguous results.

In the PDA-TOLERATE trial, researchers examined the effect of prolonged exposure to a moderate-to-large PDA shunt in infants <28 weeks’ gestational age, an important distinction to previous trials because enrollment of infants who would spontaneously close their PDA (41% of those screened) was avoided.47 

The PDA-TOLERATE trial suggests that early (<6 days) targeted pharmacologic treatment of infants <28 weeks’ gestational age with a significant shunt and need for respiratory support is of benefit, but in the absence of these characteristics, conservative management is acceptable.

In an Italian retrospective multicenter study, ELGANs born at 23 to 24 weeks’ gestation had the highest risk of developing hsPDA refractory to pharmacologic treatment requiring surgical closure (562 of 842 [67%]),74  highlighting the need for individualized strategies for timely hsPDA management in this very immature population.

Transcatheter device closure of the PDA has recently become more widely available. The Amplatzer Piccolo Occluder device (Amplatzer Duct Occluder II Additional Sizes, Abbott Medical Devices, Abbott Park, IL) recently received US Food and Drug Administration approval for PDA closure in premature infants weighing ≥700 g. In a multicenter trial of 200 patients, the Amplatzer Duct Occluder II Additional Sizes implant success rate was 95.5% (191 of 200) overall and 99% in those weighing 700 to 2000g (99 of 100; age 1.25 ± 0.60 months).87  The effective closure rate at the 6-month follow-up echocardiogram, defined as no or trivial residual PDA shunt, was 100% in patients ≤2000 g and 98.8% >2000 g. Four patients experienced a primary safety end point event (2 transfusions, 1 hemolysis, and 1 aortic obstruction).87  Additionally, 5 patients <2000 g (5%) developed new-onset moderate tricuspid regurgitation post procedure, likely related to tricuspid valve trauma during the procedure. This complication was not seen in patients >2000 g. There were no instances of left PA obstruction at the 6-month follow-up. Vascular complications are rare because the procedure is performed by using venous access only. The device is delivered entirely inside the PDA to avoid obstruction of the left PA and/or the aortic arch. Although fluoroscopy is necessary, device position and effect on adjacent structures is primarily assessed by using intraprocedural echocardiography, reducing exposure to iodinated contrast and radiation. The procedure can be performed in the catheterization laboratory or at the bedside (by using a mobile C-arm). Although there has not been an RCT comparing device closure with surgical ligation, early experience suggests that post ligation cardiac syndrome88,89  may be less common and that improvement in respiratory status may be faster after device closure.90  Although these types of catheter devices provide the health care community with a nonsurgical alternative to achieve definitive ductal closure, important questions on the optimal use of the device, such as long-term outcome, timing, and setting of the catheter intervention, need to be answered by future studies.

The PDA ligation rate in a US cohort of infants at 23 to 30 weeks’ gestation decreased from 8.4% in 2006 to 2.9% in 2015 with an accompanying shift in the age at ligation (8 days in 2006 vs 22 days in 2015).91  This trend is consistent with those of other large cohort studies.72,9294  Prophylactic and early ligation approaches are no longer indicated,95  but there remains uncertainty about when and for whom ligation has clinical benefit.

In a meta-analysis of 39 cohort studies and 1 RCT, ligation compared with medical treatment was found to be associated with increased odds of neurodevelopmental impairment, CLD, and severe retinopathy of prematurity (ROP) but decreased odds of death.96  Comparing pharmacotherapy plus ligation versus conservative treatment revealed a decrease in mortality with pharmacotherapy plus surgical ligation but increased odds of CLD and severe ROP.96 

As surgical ligation rates decline, clinicians must still respect the complications of this procedure, which may be present in up to 44% of infants.97  The major complications include postligation cardiac syndrome,98100  acute kidney injury,101  vocal cord paralysis, prolonged mechanical ventilation, and BPD.102 

The specifics of conservative management are not well defined. The spectrum extends from PDA nontreatment2,103  to intentional use of fluid restriction, targeted ventilation strategies, and diuretic therapy to counteract the effects of PDA shunt while waiting for spontaneous closure.1,8,104  In 2 Cochrane reviews in which the comparisons were placebo or no treatment versus ibuprofen or paracetamol, there was no increase in death, duration of mechanical ventilation, or incidence of CLD, NEC, periventricular leukomalacia, or all grades of IVH in the placebo or no treatment group.50,51  The PDA-TOLERATE trial provides evidence that conservative management is no worse and may be more beneficial compared to active treatment47  in select settings.

In an observational study of the natural history of hsPDA in preterm infants at <28 weeks’ gestation who were managed with fluid restriction, 111 of 195 infants developed hsPDA beyond the first week of life.2  No infant received pharmacotherapy or surgical ligation before discharge. There was no difference in hospital mortality or incidence of IVH, ROP, BPD, NEC, or sepsis in those with and without a hsPDA. The duration of PDA exposure by weekly increments did not affect outcomes. Only 2 infants required device closure after hospital discharge.2 

In a recent South Korean single-center, double-blind, placebo-controlled, noninferiority RCT, 146 preterm infants (23–30 weeks’ gestation) diagnosed with hsPDA between postnatal days 6 and 14 were studied. In contrast to the aforementioned 2018 network meta-analysis,32  in this RCT, the authors report nonintervention to be noninferior versus oral ibuprofen treatment in closing hsPDA and reducing the rate of BPD or death, probably because of the low efficacy of oral ibuprofen, especially in the 41 of 83 total infants born at 23 to 26 weeks’ gestation.105 

The California Perinatal Quality Care Collaborative data were recently interrogated to evaluate the effect on mortality in declining COX inhibitor usage from 2008 to 2015. Mortality improvement was slowed in the 400- to 749-g birth weight cohort in NICUs with reduced COX inhibitor use,106  suggesting an overlooked treatment benefit in this group. Conversely, in infants 1000 to 1499 g, a decreasing ligation rate was associated with a reduction in BPD rates.106 

In summary, as for many aspects of PDA care, conservative management is likely appropriate for subgroups of preterm infants but not all.

Several different strategies exist to manage infants with PDA. As discussed earlier, if PDA-targeted treatment is attempted, 4 main approaches can be differentiated: (1) early targeted prophylaxis (<24 hours), (2) targeted therapy of asymptomatic infants (<6 days after birth), (3) symptomatic treatment when the PDA becomes hemodynamically relevant (≥6 days after birth), and (4) late symptomatic treatment after watchful waiting or rescue treatment after previously failed treatment. In Fig 3, we present a treatment algorithm that incorporates these 4 main treatment categories into a stepwise approach; the details on drug therapy are summarized in Table 2. However, it should be noted that these recommendations are based primarily on expert opinion and only provide a framework that needs to be adapted and modified to local practices:

  1. Targeted early prophylaxis of PDA (indomethacin): Because of the high risk of exposing infants to adverse drug effects without clear benefit, targeted early prophylaxis should only be attempted in units with a low rate of spontaneous closure in carefully selected infants (eg, infants <26 weeks’ gestation, <750 g). Indomethacin is usually considered the agent of choice for prophylactic treatment42  (Table 2). Paracetamol may have fewer side effects than indomethacin or ibuprofen, but there is insufficient evidence on neurodevelopmental implications to recommend it for prophylaxis.

  2. Early targeted treatment of PDA: Pharmacologic treatment is recommended at <6 days for infants <28 weeks’ gestational age with a moderate-to-large hemodynamically significant shunt (Fig 2) and greater than minimal respiratory support (eg, >2 L nasal cannula flow, >0.25 fraction of inspired oxygen). This recommendation implies echocardiographic screening of all infants <28 weeks’ gestational age who are on any respiratory support before 6 days of postnatal life. In the absence of significant respiratory support (asymptomatic infants) or a moderate-to-large hemodynamically significant shunt (small PDA), a conservative approach may be justified.

  3. Treatment of symptomatic infants with hsPDA: All VLBW infants ≥6 days of age with greater than minimal respiratory support should be echocardiographically screened for PDA. In the presence of a moderate-to-large hsPDA and additional risk factors, such as failure of ventilator weaning and fraction of inspired oxygen > 0.25 (Fig 2), treatment may be considered (Table 2, Fig 3), although positive effects on long-term outcome have not been established. Ibuprofen is usually considered as the first drug of choice (favorable safety profile versus indomethacin).

  4. Late and rescue treatment of symptomatic infants with PDA: For infants with a moderate-to-large PDA shunt and more than minimal respiratory support, there are no RCTs evaluating pharmacologic closure versus catheter-based closure versus surgical ligation. Common sense would suggest a trial of pharmacologic closure first. After failed COX inhibitor treatment, rescue use of paracetamol might be attempted, although the success rate may be low.107,108  Recommendations for either catheter-based closure or surgical ligation post discharge vary among tertiary institutions and depend on the local experience (Table 2).

FIGURE 3

Treatment algorithm of PDA in the preterm infant. The proposed treatment algorithm incorporates the following 4 main treatment categories into a stepwise approach: (1) early targeted prophylaxis, (2) targeted therapy of asymptomatic infants (<6 days after birth), (3) symptomatic treatment of hsPDA (≥6 days after birth), and (4) late symptomatic treatment after watchful waiting or rescue treatment (for details, see main text). The details on drug therapy are summarized in Table 2. Of note, these recommendations are mostly based on expert opinion and only provide a framework that needs to be adopted and modified to local practices. For example, given the wide variance in spontaneous constriction (8%–78% in screened PDA-TOLERATE infants <28 weeks’ GA in first week of life), it is first important to know your unit’s spontaneous closure rate. There may be unrecognized factors (eg, genetics, altitude, echo interpretation, fluid, or respiratory management) that determine unit variability. In addition, the optimal indication and timing of catheter-based interventions (especially in comparison to surgical ligation) have not yet been clearly defined, and thus there is a large variability of its use among different neonatal units. a Some units attempt for early catheter intervention (eg, after the first failed pharmacologic treatment cycle. ELBW, extremely low birth weight (<1000 g); FiO2, fraction of inspired oxygen; GA, gestational age.

FIGURE 3

Treatment algorithm of PDA in the preterm infant. The proposed treatment algorithm incorporates the following 4 main treatment categories into a stepwise approach: (1) early targeted prophylaxis, (2) targeted therapy of asymptomatic infants (<6 days after birth), (3) symptomatic treatment of hsPDA (≥6 days after birth), and (4) late symptomatic treatment after watchful waiting or rescue treatment (for details, see main text). The details on drug therapy are summarized in Table 2. Of note, these recommendations are mostly based on expert opinion and only provide a framework that needs to be adopted and modified to local practices. For example, given the wide variance in spontaneous constriction (8%–78% in screened PDA-TOLERATE infants <28 weeks’ GA in first week of life), it is first important to know your unit’s spontaneous closure rate. There may be unrecognized factors (eg, genetics, altitude, echo interpretation, fluid, or respiratory management) that determine unit variability. In addition, the optimal indication and timing of catheter-based interventions (especially in comparison to surgical ligation) have not yet been clearly defined, and thus there is a large variability of its use among different neonatal units. a Some units attempt for early catheter intervention (eg, after the first failed pharmacologic treatment cycle. ELBW, extremely low birth weight (<1000 g); FiO2, fraction of inspired oxygen; GA, gestational age.

Close modal

The majority of infants discharged with a PDA will still experience closure by 1 year of age; current best evidence suggests that it is safe to leave a small PDA untreated at discharge but with appropriate follow-up.57  There is a need for prospective research on rates of spontaneous postdischarge closure rates of infants with and without cardiorespiratory sequelae (BPD and pulmonary hypertension) of prematurity (Table 3).7 

TABLE 3

Areas of Uncertainty and Future Research Directions

Areas of Uncertainty and Future Research Directions
Molecular and cellular mechanisms during initial and permanent DA closure and pathologic DA reopening (eg, during sepsis) 
Further refinement of standardized protocols for the diagnosis of PDA and grading of its hemodynamic significance 
Identification of high-risk infants who still require PDA-targeted therapy 
Relationship between duration of significant DA patency and outcome (eg, BPD, neurodevelopment) 
Impact of shunt magnitude and duration on the developing pulmonary vasculature 
Association between hsPDA (and its treatment) and long-term outcome 
Pharmacologic data on paracetamol in preterm newborn infants with PDA (pharmacokinetics, safety and efficacy as compared with ibuprofen and/or indomethacin), including combination therapy 
Development of new pharmacologic approaches, such as PGE receptor blockers 
Impact of individual risk assessment by biomarker and pharmacogenetics approaches 
Further data on safety and benefits of fluoroscopy or echo-guided catheter interventions in comparison with surgical treatment of hsPDA 
Areas of Uncertainty and Future Research Directions
Molecular and cellular mechanisms during initial and permanent DA closure and pathologic DA reopening (eg, during sepsis) 
Further refinement of standardized protocols for the diagnosis of PDA and grading of its hemodynamic significance 
Identification of high-risk infants who still require PDA-targeted therapy 
Relationship between duration of significant DA patency and outcome (eg, BPD, neurodevelopment) 
Impact of shunt magnitude and duration on the developing pulmonary vasculature 
Association between hsPDA (and its treatment) and long-term outcome 
Pharmacologic data on paracetamol in preterm newborn infants with PDA (pharmacokinetics, safety and efficacy as compared with ibuprofen and/or indomethacin), including combination therapy 
Development of new pharmacologic approaches, such as PGE receptor blockers 
Impact of individual risk assessment by biomarker and pharmacogenetics approaches 
Further data on safety and benefits of fluoroscopy or echo-guided catheter interventions in comparison with surgical treatment of hsPDA 

In the last decade, there has been a trend for less aggressive treatment of PDA in preterm infants. However, a subgroup of infants will likely benefit from intervention, be it pharmacologic, interventional, or surgical: (1) prophylactic intravenous indomethacin in highly selected ELGANs with PDA (<26 + 0/7 weeks’ gestation, <750 g birth weight; NICUs with low spontaneous closure rate); (2) early targeted therapy of PDA in selected preterm infants at particular high risk for PDA-associated complications; and (3) PDA ligation, catheter intervention, or oral paracetamol may be considered as rescue options for hsPDA closure. The impact of catheter-based interventional closure of hsPDA on clinical outcomes should be determined in prospective studies. We provide a novel treatment algorithm for PDA in preterm infants that integrates several treatment modalities in a staged approach. Our approach is somewhat limited by the lack of sufficient clinical trial data in all areas of PDA closure (expert opinion only) but is still useful for clinical guidance and for opening a debate. The recommendations of hsPDA management in the preterm infant made in this article may be adapted to local practices, and this in turn may help inform future recommendations. Comparative validation studies on the different treatment options in clearly defined at-risk populations are required.

Drs Hamrick and Hansmann conceptualized and designed this review article, drafted the initial manuscript with input from all authors, and edited and revised the manuscript; Drs Sallmon, Rose, Porras, Shelton, and Reese contributed text and/or display items and revised the manuscript for important intellectual content; and all authors approved the final manuscript as submitted.

FUNDING: Dr Hansmann receives funding from the German Research Foundation (HA4348/6-2 KFO311, HA4348/2-2), the Federal Ministry of Education and Research (BMBF ViP + program 03VP08053; BMBF 01KC2001B), and the European Pediatric Pulmonary Vascular Disease Network (www.pvdnetwork.org). Dr Shelton is funded by the National Institutes of Health (HL132805) and the American Heart Association (15SDG25280015). Dr Reese is funded by the National Institutes of Health (HL128386). Funded by the National Institutes of Health (NIH).

BPD

bronchopulmonary dysplasia

CI

confidence interval

CLD

chronic lung disease

COX

cyclooxygenase

DA

ductus arteriosus

ELGAN

extremely low gestational age newborn

FIP

focal intestinal perforation

hsPDA

hemodynamically significant patent ductus arteriosus

IVH

intraventricular hemorrhage

LA

left atrium

LV

left ventricle

NEC

necrotizing enterocolitis

PA

pulmonary artery

PAA

pharyngeal arch artery

PDA

patent ductus arteriosus

PDA-TOLERATE

Patent Ductus Arteriosus: To Leave It Alone or Respond and Treat Early

PGE

prostaglandin E

PVR

pulmonary vascular resistance

RCT

randomized controlled trial

ROP

retinopathy of prematurity

RR

relative risk

TIPP

Trial of Indomethacin Prophylaxis in Preterms

VLBW

very low birth weight

1
Hamrick
SE
,
Hansmann
G
.
Patent ductus arteriosus of the preterm infant
.
Pediatrics
.
2010
;
125
(
5
):
1020
1030
2
Sung
SI
,
Chang
YS
,
Kim
J
,
Choi
JH
,
Ahn
SY
,
Park
WS
.
Natural evolution of ductus arteriosus with noninterventional conservative management in extremely preterm infants born at 23–28 weeks of gestation
.
PLoS One
.
2019
;
14
(
2
):
e0212256
3
Clyman
RI
.
Ibuprofen and patent ductus arteriosus
.
N Engl J Med
.
2000
;
343
(
10
):
728
730
4
Gillam-Krakauer
M
,
Hagadorn
JI
,
Reese
J
.
Pharmacological closure of the patent ductus arteriosus: when treatment still makes sense
.
J Perinatol
.
2019
;
39
(
11
):
1439
1441
5
Weber
SC
,
Weiss
K
,
Bührer
C
,
Hansmann
G
,
Koehne
P
,
Sallmon
H
.
Natural history of patent ductus arteriosus in very low birth weight infants after discharge
.
J Pediatr
.
2015
;
167
(
5
):
1149
1151
6
Herrman
K
,
Bose
C
,
Lewis
K
,
Laughon
M
.
Spontaneous closure of the patent ductus arteriosus in very low birth weight infants following discharge from the neonatal unit
.
Arch Dis Child Fetal Neonatal Ed
.
2009
;
94
(
1
):
F48
F50
7
Ansems
SM
,
Kirpalani
H
,
Mercer-Rosa
L
, et al
.
Patent ductus arteriosus and the effects of its late closure in preterm infants with severe bronchopulmonary dysplasia
.
Neonatology
.
2019
;
116
(
3
):
236
243
8
Vanhaesebrouck
S
,
Zonnenberg
I
,
Vandervoort
P
,
Bruneel
E
,
Van Hoestenberghe
MR
,
Theyskens
C
.
Conservative treatment for patent ductus arteriosus in the preterm
.
Arch Dis Child Fetal Neonatal Ed
.
2007
;
92
(
4
):
F244
F247
9
Brooks
JM
,
Travadi
JN
,
Patole
SK
,
Doherty
DA
,
Simmer
K
.
Is surgical ligation of patent ductus arteriosus necessary? The Western Australian experience of conservative management
.
Arch Dis Child Fetal Neonatal Ed
.
2005
;
90
(
3
):
F235
F239
10
Noori
S
,
McCoy
M
,
Friedlich
P
, et al
.
Failure of ductus arteriosus closure is associated with increased mortality in preterm infants
.
Pediatrics
.
2009
;
123
(
1
). Available at: https://pediatrics.aappublications.org/content/123/1/e138
11
Wang
X
,
Chen
D
,
Chen
K
,
Jubran
A
,
Ramirez
A
,
Astrof
S
.
Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field
.
Dev Biol
.
2017
;
421
(
2
):
108
117
12
Lewis
TR
,
Shelton
EL
,
Van Driest
SL
,
Kannankeril
PJ
,
Reese
J
.
Genetics of the patent ductus arteriosus (PDA) and pharmacogenetics of PDA treatment
.
Semin Fetal Neonatal Med
.
2018
;
23
(
4
):
232
238
13
Bökenkamp
R
,
DeRuiter
MC
,
van Munsteren
C
,
Gittenberger-de Groot
AC
.
Insights into the pathogenesis and genetic background of patency of the ductus arteriosus
.
Neonatology
.
2010
;
98
(
1
):
6
17
14
Rooney
SR
,
Shelton
EL
,
Aka
I
, et al
.
CYP2C9*2 is associated with indomethacin treatment failure for patent ductus arteriosus
.
Pharmacogenomics
.
2019
;
20
(
13
):
939
946
15
Smith
CJ
,
Ryckman
KK
,
Bahr
TM
,
Dagle
JM
.
Polymorphisms in CYP2C9 are associated with response to indomethacin among neonates with patent ductus arteriosus
.
Pediatr Res
.
2017
;
82
(
5
):
776
780
16
Crockett
SL
,
Berger
CD
,
Shelton
EL
,
Reese
J
.
Molecular and mechanical factors contributing to ductus arteriosus patency and closure
.
Congenit Heart Dis
.
2019
;
14
(
1
):
15
20
17
Stoller
JZ
,
Demauro
SB
,
Dagle
JM
,
Reese
J
.
Current perspectives on pathobiology of the ductus arteriosus
.
J Clin Exp Cardiolog
.
2012
;
8
(
1
):
S8
-
1
18
Shelton
EL
,
Waleh
N
,
Plosa
EJ
, et al
.
Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data
.
Pediatr Res
.
2018
;
84
(
3
):
458
465
19
Hong
Z
,
Kutty
S
,
Toth
PT
, et al
.
Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus
.
Circ Res
.
2013
;
112
(
5
):
802
815
20
Yokoyama
U
,
Minamisawa
S
,
Shioda
A
, et al
.
Prostaglandin E2 inhibits elastogenesis in the ductus arteriosus via EP4 signaling
.
Circulation
.
2014
;
129
(
4
):
487
496
21
Echtler
K
,
Stark
K
,
Lorenz
M
, et al
.
Platelets contribute to postnatal occlusion of the ductus arteriosus
.
Nat Med
.
2010
;
16
(
1
):
75
82
22
Semberova
J
,
Sirc
J
,
Miletin
J
, et al
.
Spontaneous closure of patent ductus arteriosus in infants ≤1500 g
.
Pediatrics
.
2017
;
140
(
2
):
e20164258
23
Jin
MH
,
Yokoyama
U
,
Sato
Y
, et al
.
DNA microarray profiling identified a new role of growth hormone in vascular remodeling of rat ductus arteriosus
.
J Physiol Sci
.
2011
;
61
(
3
):
167
179
24
Goyal
R
,
Goyal
D
,
Longo
LD
,
Clyman
RI
.
Microarray gene expression analysis in ovine ductus arteriosus during fetal development and birth transition
.
Pediatr Res
.
2016
;
80
(
4
):
610
618
25
Waleh
N
,
Barrette
AM
,
Dagle
JM
, et al
.
Effects of advancing gestation and non-Caucasian race on ductus arteriosus gene expression
.
J Pediatr
.
2015
;
167
(
5
):
1033
1041.e2
26
Kajino
H
,
Goldbarg
S
,
Roman
C
, et al
.
Vasa vasorum hypoperfusion is responsible for medial hypoxia and anatomic remodeling in the newborn lamb ductus arteriosus
.
Pediatr Res
.
2002
;
51
(
2
):
228
235
27
Olsson
KW
,
Jonzon
A
,
Sindelar
R
.
A high ductal flow velocity is associated with successful pharmacological closure of patent ductus arteriosus in infants 22–27 weeks gestational age
.
Crit Care Res Pract
.
2012
;
2012
:
715265
28
Bapat
R
,
Aggarwal
S
,
Natarajan
G
.
A right-to-left or bidirectional ductal shunt in preterm neonates: grave implication?
Am J Perinatol
.
2011
;
28
(
9
):
709
714
29
Simon
SR
,
van Zogchel
L
,
Bas-Suárez
MP
,
Cavallaro
G
,
Clyman
RI
,
Villamor
E
.
Platelet counts and patent ductus arteriosus in preterm infants: a systematic review and meta-analysis
.
Neonatology
.
2015
;
108
(
2
):
143
151
30
Sallmon
H
,
Weber
SC
,
Hüning
B
, et al
.
Thrombocytopenia in the first 24 hours after birth and incidence of patent ductus arteriosus
.
Pediatrics
.
2012
;
130
(
3
). Available at: https://pediatrics.aappublications.org/content/130/3/e623
31
Sallmon
H
,
Weber
SC
,
Dirks
J
, et al
.
Association between platelet counts before and during pharmacological therapy for patent ductus arteriosus and treatment failure in preterm infants
.
Front Pediatr
.
2018
;
6
:
41
32
Mitra
S
,
Florez
ID
,
Tamayo
ME
, et al
.
Association of placebo, indomethacin, ibuprofen, and acetaminophen with closure of hemodynamically significant patent ductus arteriosus in preterm infants: a systematic review and meta-analysis
.
JAMA
.
2018
;
319
(
12
):
1221
1238
33
Kumar
J
,
Dutta
S
,
Sundaram
V
,
Saini
SS
,
Sharma
RR
,
Varma
N
.
Platelet transfusion for PDA closure in preterm infants: a randomized controlled trial
.
Pediatrics
.
2019
;
143
(
5
):
e20182565
34
Sallmon
H
,
Weber
SC
,
von Gise
A
,
Koehne
P
,
Hansmann
G
.
Ductal closure in neonates: a developmental perspective on platelet-endothelial interactions
.
Blood Coagul Fibrinolysis
.
2011
;
22
(
3
):
242
244
35
Kahvecioglu
D
,
Erdeve
O
,
Akduman
H
, et al
.
Influence of platelet count, platelet mass index, and platelet function on the spontaneous closure of ductus arteriosus in the prematurity
.
Pediatr Neonatol
.
2018
;
59
(
1
):
53
57
36
Benitz
WE
.
Treatment of persistent patent ductus arteriosus in preterm infants: time to accept the null hypothesis?
J Perinatol
.
2010
;
30
(
4
):
241
252
37
Clyman
RI
.
Patent ductus arteriosus, its treatments, and the risks of pulmonary morbidity
.
Semin Perinatol
.
2018
;
42
(
4
):
235
242
38
Hansmann
G
.
Pulmonary hypertension in infants, children, and young adults
.
J Am Coll Cardiol
.
2017
;
69
(
20
):
2551
2569
39
Hansmann
G
,
Sallmon
H
,
Roehr
CC
,
Kourembanas
S
,
Austin
ED
,
Koestenberger
M
;
European Pediatric Pulmonary Vascular Disease Network (EPPVDN)
.
Pulmonary hypertension in bronchopulmonary dysplasia [published online ahead of print Jun 10, 2020]
.
Pediatr Res
.
doi:10.1038/s41390-020-0993-4
40
Schmidt
B
,
Davis
P
,
Moddemann
D
, et al.;
Trial of Indomethacin Prophylaxis in Preterms Investigators
.
Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants
.
N Engl J Med
.
2001
;
344
(
26
):
1966
1972
41
Alfaleh
KM
,
Al Luwaimi
E
,
Alkharfi
TM
,
Al-Alaiyan
SA
.
A decision aid for considering indomethacin prophylaxis vs. symptomatic treatment of PDA for extreme low birth weight infants
.
BMC Pediatr
.
2011
;
11
:
78
42
Kluckow
M
,
Jeffery
M
,
Gill
A
,
Evans
N
.
A randomised placebo-controlled trial of early treatment of the patent ductus arteriosus
.
Arch Dis Child Fetal Neonatal Ed
.
2014
;
99
(
2
):
F99
F104
43
Saldeño
YP
,
Favareto
V
,
Mirpuri
J
.
Prolonged persistent patent ductus arteriosus: potential perdurable anomalies in premature infants
.
J Perinatol
.
2012
;
32
(
12
):
953
958
44
Schena
F
,
Francescato
G
,
Cappelleri
A
, et al
.
Association between hemodynamically significant patent ductus arteriosus and bronchopulmonary dysplasia
.
J Pediatr
.
2015
;
166
(
6
):
1488
1492
45
Mirza
H
,
Garcia
J
,
McKinley
G
, et al
.
Duration of significant patent ductus arteriosus and bronchopulmonary dysplasia in extremely preterm infants
.
J Perinatol
.
2019
;
39
(
12
):
1648
1655
46
Gudmundsdottir
A
,
Johansson
S
,
Håkansson
S
,
Norman
M
,
Källen
K
,
Bonamy
AK
.
Timing of pharmacological treatment for patent ductus arteriosus and risk of secondary surgery, death or bronchopulmonary dysplasia: a population-based cohort study of extremely preterm infants
.
Neonatology
.
2015
;
107
(
2
):
87
92
47
Clyman
RI
,
Liebowitz
M
,
Kaempf
J
, et al.;
PDA-TOLERATE (PDA: TO LEave it alone or Respond And Treat Early) Trial Investigators
.
PDA-TOLERATE trial: an exploratory randomized controlled trial of treatment of moderate-to-large patent ductus arteriosus at 1 week of age
.
J Pediatr
.
2019
;
205
:
41
48.e6
48
Liebowitz
M
,
Katheria
A
,
Sauberan
J
, et al.;
PDA-TOLERATE (PDA: TOLEave it alone or Respond And Treat Early) Trial Investigators
.
Lack of equipoise in the PDA-TOLERATE trial: a comparison of eligible infants enrolled in the trial and those treated outside the trial
.
J Pediatr
.
2019
;
213
:
222
226.e2
49
Clyman
RI
,
Hills
NK
,
Liebowitz
M
,
Johng
S
.
Relationship between duration of infant exposure to a moderate-to-large patent ductus arteriosus shunt and the risk of developing bronchopulmonary dysplasia or death before 36 Weeks
.
Am J Perinatol
.
2020
;
37
(
2
):
216
223
50
Ohlsson
A
,
Shah
PS
.
Paracetamol (acetaminophen) for patent ductus arteriosus in preterm or low birth weight infants
.
Cochrane Database Syst Rev
.
2020
;(
1
):
CD010061
51
Ohlsson
A
,
Shah
SS
.
Ibuprofen for the prevention of patent ductus arteriosus in preterm and/or low birth weight infants
.
Cochrane Database Syst Rev
.
2020
;(
1
):
CD004213
52
Cassady
G
,
Crouse
DT
,
Kirklin
JW
, et al
.
A randomized, controlled trial of very early prophylactic ligation of the ductus arteriosus in babies who weighed 1000 g or less at birth
.
N Engl J Med
.
1989
;
320
(
23
):
1511
1516
53
Jhaveri
N
,
Moon-Grady
A
,
Clyman
RI
.
Early surgical ligation versus a conservative approach for management of patent ductus arteriosus that fails to close after indomethacin treatment
.
J Pediatr
.
2010
;
157
(
3
):
381
387, 387.e1
54
Wickremasinghe
AC
,
Rogers
EE
,
Piecuch
RE
, et al
.
Neurodevelopmental outcomes following two different treatment approaches (early ligation and selective ligation) for patent ductus arteriosus
.
J Pediatr
.
2012
;
161
(
6
):
1065
1072
55
Lemmers
PM
,
Toet
MC
,
van Bel
F
.
Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants
.
Pediatrics
.
2008
;
121
(
1
):
142
147
56
Lemmers
PM
,
Benders
MJNL
,
D’Ascenzo
R
, et al
.
Patent ductus arteriosus and brain volume
.
Pediatrics
.
2016
;
137
(
4
):
e20153090
57
Janz-Robinson
EM
,
Badawi
N
,
Walker
K
,
Bajuk
B
,
Abdel-Latif
ME
;
Neonatal Intensive Care Units Network
.
Neurodevelopmental outcomes of premature infants treated for patent ductus arteriosus: a population-based cohort study
.
J Pediatr
.
2015
;
167
(
5
):
1025
1032.e3
58
Collins
RT
 II
,
Lyle
RE
,
Rettiganti
M
,
Gossett
JM
,
Robbins
JM
,
Casey
PH
.
Long-term neurodevelopment of low-birthweight, preterm infants with patent ductus arteriosus
.
J Pediatr
.
2018
;
203
:
170
176.e1
59
Wadhawan
R
,
Oh
W
,
Vohr
BR
, et al
.
Spontaneous intestinal perforation in extremely low birth weight infants: association with indometacin therapy and effects on neurodevelopmental outcomes at 18–22 months corrected age
.
Arch Dis Child Fetal Neonatal Ed
.
2013
;
98
(
2
):
F127
F132
60
Clyman
R
,
Wickremasinghe
A
,
Jhaveri
N
, et al.;
Ductus Arteriosus Feed or Fast with Indomethacin or Ibuprofen (DAFFII) Investigators
.
Enteral feeding during indomethacin and ibuprofen treatment of a patent ductus arteriosus
.
J Pediatr
.
2013
;
163
(
2
):
406
411
61
Yanowitz
TD
,
Reese
J
,
Gillam-Krakauer
M
, et al
.
Superior mesenteric artery blood flow velocities following medical treatment of a patent ductus arteriosus
.
J Pediatr
.
2014
;
164
(
3
):
661
663
62
Kelleher
J
,
Salas
AA
,
Bhat
R
, et al.;
GDB Subcommittee, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network
.
Prophylactic indomethacin and intestinal perforation in extremely low birth weight infants
.
Pediatrics
.
2014
;
134
(
5
). Available at: https://pediatrics.aappublications.org/content/134/5/e1369
63
Jain
A
,
Shah
PS
.
Diagnosis, evaluation, and management of patent ductus arteriosus in preterm neonates
.
JAMA Pediatr
.
2015
;
169
(
9
):
863
872
64
Sallmon
H
,
Koehne
P
,
Hansmann
G
.
Recent advances in the treatment of preterm newborn infants with patent ductus arteriosus
.
Clin Perinatol
.
2016
;
43
(
1
):
113
129
65
Heuchan
AM
,
Young
D
.
Early colour Doppler duct diameter and symptomatic patent ductus arteriosus in a cyclo-oxygenase inhibitor naïve population
.
Acta Paediatr
.
2013
;
102
(
3
):
254
257
66
Pees
C
,
Walch
E
,
Obladen
M
,
Koehne
P
.
Echocardiography predicts closure of patent ductus arteriosus in response to ibuprofen in infants less than 28 week gestational age
.
Early Hum Dev
.
2010
;
86
(
8
):
503
508
67
Rozé
JC
,
Cambonie
G
,
Marchand-Martin
L
, et al.;
Hemodynamic EPIPAGE 2 Study Group
.
Association between early screening for patent ductus arteriosus and in-hospital mortality among extremely preterm infants
.
JAMA
.
2015
;
313
(
24
):
2441
2448
68
Shepherd
JL
,
Noori
S
.
What is a hemodynamically significant PDA in preterm infants?
Congenit Heart Dis
.
2019
;
14
(
1
):
21
26
69
Chock
VY
,
Rose
LA
,
Mante
JV
,
Punn
R
.
Near-infrared spectroscopy for detection of a significant patent ductus arteriosus
.
Pediatr Res
.
2016
;
80
(
5
):
675
680
70
Ledo
A
,
Aguar
M
,
Núñez-Ramiro
A
,
Saénz
P
,
Vento
M
.
Abdominal near-infrared spectroscopy detects low mesenteric perfusion early in preterm infants with hemodynamic significant ductus arteriosus
.
Neonatology
.
2017
;
112
(
3
):
238
245
71
EL-Khuffash
A
,
James
AT
,
Cleary
A
,
Semberova
J
,
Franklin
O
,
Miletin
J
.
Late medical therapy of patent ductus arteriosus using intravenous paracetamol
.
Arch Dis Child Fetal Neonatal Ed
.
2015
;
100
(
3
):
F253
F256
72
Ngo
S
,
Profit
J
,
Gould
JB
,
Lee
HC
.
Trends in patent ductus arteriosus diagnosis and management for very low birth weight infants
.
Pediatrics
.
2017
;
139
(
4
):
e20162390
73
Liebowitz
M
,
Kaempf
J
,
Erdeve
O
, et al
.
Comparative effectiveness of drugs used to constrict the patent ductus arteriosus: a secondary analysis of the PDA-TOLERATE trial (NCT01958320)
.
J Perinatol
.
2019
;
39
(
5
):
599
607
74
Dani
C
,
Mosca
F
,
Cresi
F
, et al
.
Patent ductus arteriosus in preterm infants born at 23–24 weeks’ gestation: should we pay more attention?
Early Hum Dev
.
2019
;
135
:
16
22
75
Van Overmeire
B
,
Smets
K
,
Lecoutere
D
, et al
.
A comparison of ibuprofen and indomethacin for closure of patent ductus arteriosus
.
N Engl J Med
.
2000
;
343
(
10
):
674
681
76
Ohlsson
A
,
Walia
R
,
Shah
SS
.
Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants
.
Cochrane Database Syst Rev
.
2018
;(
9
):
CD003481
77
Demir
N
,
Peker
E
,
Ece
İ
,
Balahoroğlu
R
,
Tuncer
O
.
Efficacy and safety of rectal ibuprofen for patent ductus arteriosus closure in very low birth weight preterm infants
.
J Matern Fetal Neonatal Med
.
2017
;
30
(
17
):
2119
2125
78
Hochwald
O
,
Mainzer
G
,
Borenstein-Levin
L
, et al
.
Adding paracetamol to ibuprofen for the treatment of patent ductus arteriosus in preterm infants: a double-blind, randomized, placebo-controlled pilot study
.
Am J Perinatol
.
2018
;
35
(
13
):
1319
1325
79
Yurttutan
S
,
Bozkaya
A
,
Hüdayioglu
F
,
Oncel
MY
.
The effect of combined therapy for treatment of monotherapy-resistant PDA in preterm infants
.
J Matern Fetal Neonatal Med
.
2019
;
32
(
21
):
3662
3665
80
Sakuma
T
,
Akaike
T
,
Minamisawa
S
.
Prostaglandin E2 receptor EP4 inhibition contracts rat ductus arteriosus
.
Circ J
.
2018
;
83
(
1
):
209
216
81
Schmidt
B
,
Roberts
RS
,
Fanaroff
A
, et al.;
TIPP Investigators
.
Indomethacin prophylaxis, patent ductus arteriosus, and the risk of bronchopulmonary dysplasia: further analyses from the Trial of Indomethacin Prophylaxis in Preterms (TIPP)
.
J Pediatr
.
2006
;
148
(
6
):
730
734
82
Davidson
JM
,
Ferguson
J
,
Ivey
E
,
Philip
R
,
Weems
MF
,
Talati
AJ
.
A randomized trial of intravenous acetaminophen versus indomethacin for treatment of hemodynamically significant PDAs in VLBW infants [published online ahead of print May 21, 2020]
.
J Perinatol
.
doi:10.1038/s41372-020-0694-1
83
Ment
LR
,
Vohr
BR
,
Makuch
RW
, et al
.
Prevention of intraventricular hemorrhage by indomethacin in male preterm infants
.
J Pediatr
.
2004
;
145
(
6
):
832
834
84
Miller
SP
,
Mayer
EE
,
Clyman
RI
,
Glidden
DV
,
Hamrick
SEG
,
Barkovich
AJ
.
Prolonged indomethacin exposure is associated with decreased white matter injury detected with magnetic resonance imaging in premature newborns at 24 to 28 weeks’ gestation at birth
.
Pediatrics
.
2006
;
117
(
5
):
1626
1631
85
Härkin
P
,
Härma
A
,
Aikio
O
, et al
.
Paracetamol accelerates closure of the ductus arteriosus after premature birth: a randomized trial
.
J Pediatr
.
2016
;
177
:
72
77.e2
86
Ohlsson
A
,
Walia
R
,
Shah
SS
.
Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants
.
Cochrane Database Syst Rev
.
2020
;(
2
):
CD003481
87
Sathanandam
SK
,
Gutfinger
D
,
O’Brien
L
, et al
.
Amplatzer Piccolo Occluder clinical trial for percutaneous closure of the patent ductus arteriosus in patients ≥700 grams [published online ahead of print May 20, 2020]
.
Catheter Cardiovasc Interv
.
doi:10.1002/ccd.28973
88
Zahn
EM
,
Peck
D
,
Phillips
A
, et al
.
Transcatheter closure of patent ductus arteriosus in extremely premature newborns: early results and midterm follow-up
.
JACC Cardiovasc Interv
.
2016
;
9
(
23
):
2429
2437
89
Sathanandam
S
,
Justino
H
,
Waller
BR
 III
,
Radtke
W
,
Qureshi
AM
.
Initial clinical experience with the Medtronic Micro Vascular PlugTM in transcatheter occlusion of PDAs in extremely premature infants
.
Catheter Cardiovasc Interv
.
2017
;
89
(
6
):
1051
1058
90
Sathanandam
S
,
Balduf
K
,
Chilakala
S
, et al
.
Role of transcatheter patent ductus arteriosus closure in extremely low birth weight infants
.
Catheter Cardiovasc Interv
.
2019
;
93
(
1
):
89
96
91
Bixler
GM
,
Powers
GC
,
Clark
RH
,
Walker
MW
,
Tolia
VN
.
Changes in the diagnosis and management of patent ductus arteriosus from 2006 to 2015 in United States neonatal intensive care units
.
J Pediatr
.
2017
;
189
:
105
112
92
Lokku
A
,
Mirea
L
,
Lee
SK
,
Shah
PS
;
Canadian Neonatal Network
.
Trends and outcomes of patent ductus arteriosus treatment in very preterm infants in Canada
.
Am J Perinatol
.
2017
;
34
(
5
):
441
450
93
Hagadorn
JI
,
Brownell
EA
,
Trzaski
JM
, et al
.
Trends and variation in management and outcomes of very low-birth-weight infants with patent ductus arteriosus
.
Pediatr Res
.
2016
;
80
(
6
):
785
792
94
Reese
J
,
Scott
TA
,
Patrick
SW
.
Changing patterns of patent ductus arteriosus surgical ligation in the United States
.
Semin Perinatol
.
2018
;
42
(
4
):
253
261
95
Mosalli
R
,
Alfaleh
K
.
Prophylactic surgical ligation of patent ductus arteriosus for prevention of mortality and morbidity in extremely low birth weight infants
.
Cochrane Database Syst Rev
.
2008
;(
1
):
CD006181
96
Weisz
DE
,
More
K
,
McNamara
PJ
,
Shah
PS
.
PDA ligation and health outcomes: a meta-analysis
.
Pediatrics
.
2014
;
133
(
4
). Available at: https://pediatrics.aappublications.org/content/133/4/e1024
97
Foster
M
,
Mallett
LH
,
Govande
V
, et al
.
Short-term complications associated with surgical ligation of patent ductus arteriosus in ELBW infants: a 25-year cohort study [published online ahead of print November 4, 2019]
.
Am J Perinatol
.
doi:10.1055/s-0039-1698459
98
El-Khuffash
AF
,
Jain
A
,
Dragulescu
A
,
McNamara
PJ
,
Mertens
L
.
Acute changes in myocardial systolic function in preterm infants undergoing patent ductus arteriosus ligation: a tissue Doppler and myocardial deformation study
.
J Am Soc Echocardiogr
.
2012
;
25
(
10
):
1058
1067
99
Teixeira
LS
,
Shivananda
SP
,
Stephens
D
,
Van Arsdell
G
,
McNamara
PJ
.
Postoperative cardiorespiratory instability following ligation of the preterm ductus arteriosus is related to early need for intervention
.
J Perinatol
.
2008
;
28
(
12
):
803
810
100
Ulrich
TJB
,
Hansen
TP
,
Reid
KJ
,
Bingler
MA
,
Olsen
SL
.
Post-ligation cardiac syndrome is associated with increased morbidity in preterm infants
.
J Perinatol
.
2018
;
38
(
5
):
537
542
101
Aygün
A
,
Poryo
M
,
Wagenpfeil
G
, et al
.
Birth weight, Apgar scores and gentamicin were associated with acute kidney injuries in VLBW neonates requiring treatment for patent ductus arteriosus
.
Acta Paediatr
.
2019
;
108
(
4
):
645
653
102
Henry
BM
,
Hsieh
WC
,
Sanna
B
,
Vikse
J
,
Taterra
D
,
Tomaszewski
KA
.
Incidence, risk factors, and comorbidities of vocal cord paralysis after surgical closure of a patent ductus arteriosus: a meta-analysis
.
Pediatr Cardiol
.
2019
;
40
(
1
):
116
125
103
Mohamed
MA
,
El-Dib
M
,
Alqahtani
S
,
Alyami
K
,
Ibrahim
AN
,
Aly
H
.
Patent ductus arteriosus in premature infants: to treat or not to treat?
J Perinatol
.
2017
;
37
(
6
):
652
657
104
Borràs-Novell
C
,
Riverola
A
,
Aldecoa-Bilbao
V
,
Izquierdo
M
,
Domingo
M
.
Clinical outcomes after more conservative management of patent ductus arteriosus in preterm infants
.
J Pediatr (Rio J)
.
2020
;
96
(
2
):
177
183
105
Sung
SI
,
Lee
MH
,
Ahn
SY
,
Chang
YS
,
Park
WS
.
Effect of nonintervention vs oral ibuprofen in patent ductus arteriosus in preterm infants: a randomized clinical trial
.
JAMA Pediatr
.
2020
;
174
(
8
):
755
763
106
Hagadorn
JI
,
Bennett
MV
,
Brownell
EA
,
Payton
KSE
,
Benitz
WE
,
Lee
HC
.
Covariation of neonatal intensive care unit-level patent ductus arteriosus management and in-neonatal intensive care unit outcomes following preterm birth
.
J Pediatr
.
2018
;
203
:
225
233.e1
107
Mashally
S
,
Nield
LE
,
McNamara
PJ
, et al
.
Late oral acetaminophen versus immediate surgical ligation in preterm infants with persistent large patent ductus arteriosus
.
J Thorac Cardiovasc Surg
.
2018
;
156
(
5
):
1937
1944
108
Sallmon
H
,
Koehne
P
.
Further experience with oral paracetamol as a rescue therapy for patent ductus arteriosus in preterm infants
.
Pediatr Cardiol
.
2018
;
39
(
2
):
411
412

Competing Interests

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.