Congenital heart disease (CHD) is the most common congenital abnormality worldwide, affecting 8 to 12 infants per 1000 births globally and causing >40% of prenatal deaths. However, its causes remain mainly unknown, with only up to 15% of CHD cases having a determined genetic cause. Exploring the complex relationship between genetics and environmental exposures is key in understanding the multifactorial nature of the development of CHD. Multiple population-level association studies have been conducted on maternal environmental exposures and their association with CHD, including evaluating the effect of maternal disease, medication exposure, environmental pollution, and tobacco and alcohol use on the incidence of CHD. However, these studies have been done in a siloed manner, with few examining the interplay between multiple environmental exposures. Here, we broadly and qualitatively review the current literature on maternal and paternal prenatal exposures and their association with CHD. We propose using the framework of the emerging field of the exposome, the environmental complement to the genome, to review all internal and external prenatal environmental exposures and identify potentiating or alleviating synergy between exposures. Finally, we propose mechanistic pathways through which susceptibility to development of CHD may be induced via the totality of prenatal environmental exposures, including the interplay between placental and cardiac development and the internal vasculature and placental morphology in early stages of pregnancy.

CHD is the most common congenital birth defect worldwide.1,2  Yet, its causes remain mainly unknown.3  At most, 15% of CHD cases have been shown to have a genetic cause; however, there is increasing realization of an environmental role in CHD, with up to 30% of cases associated with environmental factors, such as high temperature, radiation, strong noise, medicines, and biological factors, such as viruses, bacteria, and parasites.4,5  Environmental factors present in utero during the second to third weeks after fertilization have been shown to impact fetal development, leading to cardiac abnormalities.3 

In 2005, Wild coined the term “exposome” as an environmental complement to the genome to address the imbalance in emphasis, knowledge, and precision measurement between genes and environment.6  This imbalance makes it impossible to derive maximal health benefits from genome and large cohort studies. A complete exposome exists only theoretically and includes a comprehensive environmental exposure history (including lifestyle factors) from the prenatal period onwards.6  There are 3 domains of the exposome: internal, specific external, and general external. Internal factors are intrinsic characteristics that are unique to an individual, such as one’s age, physiology, and genetics that influence susceptibility to environmental influences. Specific external factors include diet, occupation, medicine usage, and biological and physical exposures. General external factors are broader social constructs, such as social economic status, education level, and the neighborhood in which one lives.7  Although multiple studies have examined general and specific external factors, none to our knowledge have attempted to address the totality of environmental exposures or explored synergistic pathways between exposures to better conceptualize the exposome of CHD and, thus, pave the way both for future novel investigation and meta-analyses within and among the exposome domains. This broad approach also calls clinician attention to the ubiquitous nature of identified factors contributing to increased risk. The prevalence of many of these exposures remains challenging to accurately measure on a population level. Some exposures, such as high levels of particulate matter <2.5 μm in diameter (PM2.5) are known to affect 92% of the world’s population, whereas hypertension has been identified in up to 10% of pregnancies.8  On the other hand, many other risk factors, such as maternal nonsteroidal antiinflammatory drug (NSAID) use or periconceptional fever, lack accurate point estimates because they rely on self-report and recall. Further confounding the picture is the lack of studies in which researchers investigate the interplay of many seemingly unrelated modifiable factors. As genetic contribution to CHD remains limited, establishment of an exposome for the disease will be an ongoing process, which may ultimately significantly improve CHD prevention and facilitate informed decision-making in the public health sphere.

Here we broadly review contemporary literature for general and specific external factors related to CHD with the dual purpose of identification of areas warranting further study and review of potential mechanisms for further exploration to establish an exposome framework for CHD (Fig 1).

FIGURE 1

Central illustration: the 3 domains of the exposome and CHD.

FIGURE 1

Central illustration: the 3 domains of the exposome and CHD.

Close modal

A literature search was performed in PubMed by using the search terms “exposome,” “environmental exposure,” “congenital heart disease,” and “congenital heart defect.” Terms were entered in different combinations, with reference list search performed with selected articles. Inclusion criteria were case-control or population-based studies, systematic reviews, and meta-analyses examining associations between maternal or paternal exposures and the incidence of CHD overall or a specific subtype of CHD. Articles included were published between January 1970 and December 2019, which was the time of index search. Articles were initially screened by title and abstract; preliminarily eligible articles were read in completion by reviewers for confirmation of eligibility. Given the diversity of studies included in this review, the emphasis of data extraction from each article were study type and methodology, population studied, major outcomes, strengths, and limitations.

Hypoplastic left heart syndrome (HLHS) and coarctation of the aorta (CoA) have been shown to exhibit seasonality in incidence.9,10  Peak birth months of HLHS have been noted in the summer months, with peak birth months of April to May for CoA.9  Others have shown bimodal seasonal peaks for CoA from September to November and January to March.10  Geographical clustering and variation led to the conclusion that multiple different environmental factors were implicated; variations in nutrition, UV light exposure, and seasonal viral infections were posited as possible etiologies.9,10 

Multiple different classes of medication have been investigated as potential causative agents of CHD. These categories include antihypertensives, antiinfectives, insulin, fertility drugs, NSAIDs, anticonvulsants, antidepressants, and other classes of psychotropic medication. Although moderate associations have been found between each of these drug classes and CHD (Table 1), the results have been largely inconsistent and nonreproducible.1020  The potential for confounding by underlying maternal disease and the risk of untreated disease renders maternal medication usage an exposure ideally suited to measurement via a comprehensive exposome model.21 

TABLE 1

Select Studies of Maternal Medication Exposure and CHD

StudyStudy DesignMedicationType of CHDMajor Findings
Antihypertensives     
 Caton et al (2009)10  Case-control Antihypertensives (ACEi, antiadrenergic, β-blockers, CCBs, diuretics) PVS First semester treatment: OR 2.6 (95% CI 1.3–5.4) 
    Second or third trimester treatment: OR 2.4 (95% CI 1.1– 5.4) 
   EBV First semester treatment: OR 11.4 (95% CI 2.8–34.1) 
    Untreated hypertension: OR 2.1 (95% CI 1.0–4.3) 
   CoA First semester treatment: OR 3.0 (95% CI 1.3–6.6) 
   ASD First semester treatment: OR 2.4 (95% CI 1.3–4.4) 
    Second or third trimester treatment: OR 2.4 (95% CI 1.3–4.4) 
    Untreated hypertension: OR 1.3 (95% CI 1.0–1.6) 
   VSD Second or third trimester treatment: OR 2.3 (95% CI 1.2 –4.6) 
 Källén et al (2003)11  Case-control Antihypertensives CHD overall OR 2.03 (95% CI 1.46–2.84) 
   β-blockers  OR 1.85 (95% CI 1.24–2.75) 
Antiinfectives     
 Crider et al (2009)13  Case-control Any antibacterial CHD overall aOR 1.1 (95% CI 1.0–1.3) 
  Sulfonamides HLHS aOR 3.2 (95% CI 1.3–7.6) 
   CoA aOR 2.7 (95% CI 1.3–5.6) 
  Nitrofurantoins HLHS aOR 4.2 (95% CI 1.9–9.1) 
   ASD aOR 1.9 (95% CI 1.1–3.4) 
  Quinolones Conotruncal defects aOR 2.7 (95% CI 1.1–6.6) 
   TOF aOR 3.7 (95% CI 1.3–10.5) 
 Czeizel et al (2004)14  Case-control Sulfonamides CHD overall aPOR 3.5 (95% CI 1.9–6.4) 
   Sulfamethoxydiazine  CHD overall aPOR 6.5 (95% CI 2.6–15.9) 
    VSD aPOR 17.1 (95% CI 1.3–141.1) 
 Källén et al (2003)11  Case-control Urinary antiseptic CHD overall OR 1.57 (95% CI 1.10–2.25) 
  Macrolides CHD overall OR 1.79 (95% CI 1.33–2.79) 
  Erythromycin CHD overall OR 1.91 (95% CI 1.30–2.80) 
  Nitrofurantoin CHD overall OR 1.68 (95% CI 1.17–2.40) 
 Källén et al (2005)12  Retrospective cohort Erythromycin CHD overall OR 1.84 (95% CI 1.70–6.12) 
Insulin     
 Källén et al (2003)11  Case-control Insulin CHD overall OR 3.69 (95% CI 2.85–4.78) 
Fertility drugs     
 Källén et al (2003)11  Case-control Fertility drugs CHD overall OR 1.81 (95% CI 1.22–2.70) 
   Clomiphene  OR 1.92 (95% CI 1.13–3.24) 
   Chorionic gonadotropin  OR 1.77 (95% CI 1.00–3.13) 
NSAIDs     
 Källén et al (2003)11  Case-control Naproxen CHD overall OR 1.70 (95% CI 1.14–2.54) 
 Ericson et al (2001)17  Case-control NSAIDs CHD overall OR 1.86 (95% CI 1.32–2.62) 
Psychotropics     
 Correa-Villaseñor et al (1994)15  Case-control BZD EBV OR 5.4 (95% CI 1.5–19.11) 
 Diav-Citrin et al (2014)16  Prospective cohort Lithium CHD overall aOR 4.75 (95% CI 1.11–20.36) 
 Källén et al (2003)11  Case-control Anticonvulsants CHD overall OR 1.60 (95% CI 1.02–2.52) 
Antidepressants     
 Ban et al (2014)18  Retrospective cohort SSRI CHD overall aOR 1.14 (95% CI 0.89–1.45) 
   Paroxetine  aOR 1.78 (95% CI 1.09–2.88) 
  TCA  aOR 1.03 (95% CI 0.65–1.63) 
  SSRI and TCA  aOR 0.85 (95% CI 0.21–3.42) 
 Grigoriadis et al (2013)19  Systematic review; meta-analysis Antidepressants CHD overall RR 1.36 (95% CI 1.08–1.71) 
   Paroxetine Septal heart defects RR 1.40 (95% CI 1.10–1.77) 
    CHD overall RR 1.43 (95% CI 1.08–1.88) 
 Källén et al (2003)11  Case-control TCA CHD overall OR 1.77 (95% CI 1.07–2.91) 
  Clomipramine CHD overall OR 2.03 (95% CI 1.22–3.40) 
 Pedersen et al (2009)20  Retrospective cohort SSRI Septal heart defects OR 1.99 (95% CI 1.13–3.53) 
   Sertraline  OR 3.25 (95% CI 1.21–8.75) 
   Citalopram  OR 2.52 (95% CI 1.04–6.10) 
   Fluoxetine  OR 1.34 (95% CI 0.33–5.41) 
   ≥2 SSRIs  OR 4.70 (95% CI 1.74–12.7) 
StudyStudy DesignMedicationType of CHDMajor Findings
Antihypertensives     
 Caton et al (2009)10  Case-control Antihypertensives (ACEi, antiadrenergic, β-blockers, CCBs, diuretics) PVS First semester treatment: OR 2.6 (95% CI 1.3–5.4) 
    Second or third trimester treatment: OR 2.4 (95% CI 1.1– 5.4) 
   EBV First semester treatment: OR 11.4 (95% CI 2.8–34.1) 
    Untreated hypertension: OR 2.1 (95% CI 1.0–4.3) 
   CoA First semester treatment: OR 3.0 (95% CI 1.3–6.6) 
   ASD First semester treatment: OR 2.4 (95% CI 1.3–4.4) 
    Second or third trimester treatment: OR 2.4 (95% CI 1.3–4.4) 
    Untreated hypertension: OR 1.3 (95% CI 1.0–1.6) 
   VSD Second or third trimester treatment: OR 2.3 (95% CI 1.2 –4.6) 
 Källén et al (2003)11  Case-control Antihypertensives CHD overall OR 2.03 (95% CI 1.46–2.84) 
   β-blockers  OR 1.85 (95% CI 1.24–2.75) 
Antiinfectives     
 Crider et al (2009)13  Case-control Any antibacterial CHD overall aOR 1.1 (95% CI 1.0–1.3) 
  Sulfonamides HLHS aOR 3.2 (95% CI 1.3–7.6) 
   CoA aOR 2.7 (95% CI 1.3–5.6) 
  Nitrofurantoins HLHS aOR 4.2 (95% CI 1.9–9.1) 
   ASD aOR 1.9 (95% CI 1.1–3.4) 
  Quinolones Conotruncal defects aOR 2.7 (95% CI 1.1–6.6) 
   TOF aOR 3.7 (95% CI 1.3–10.5) 
 Czeizel et al (2004)14  Case-control Sulfonamides CHD overall aPOR 3.5 (95% CI 1.9–6.4) 
   Sulfamethoxydiazine  CHD overall aPOR 6.5 (95% CI 2.6–15.9) 
    VSD aPOR 17.1 (95% CI 1.3–141.1) 
 Källén et al (2003)11  Case-control Urinary antiseptic CHD overall OR 1.57 (95% CI 1.10–2.25) 
  Macrolides CHD overall OR 1.79 (95% CI 1.33–2.79) 
  Erythromycin CHD overall OR 1.91 (95% CI 1.30–2.80) 
  Nitrofurantoin CHD overall OR 1.68 (95% CI 1.17–2.40) 
 Källén et al (2005)12  Retrospective cohort Erythromycin CHD overall OR 1.84 (95% CI 1.70–6.12) 
Insulin     
 Källén et al (2003)11  Case-control Insulin CHD overall OR 3.69 (95% CI 2.85–4.78) 
Fertility drugs     
 Källén et al (2003)11  Case-control Fertility drugs CHD overall OR 1.81 (95% CI 1.22–2.70) 
   Clomiphene  OR 1.92 (95% CI 1.13–3.24) 
   Chorionic gonadotropin  OR 1.77 (95% CI 1.00–3.13) 
NSAIDs     
 Källén et al (2003)11  Case-control Naproxen CHD overall OR 1.70 (95% CI 1.14–2.54) 
 Ericson et al (2001)17  Case-control NSAIDs CHD overall OR 1.86 (95% CI 1.32–2.62) 
Psychotropics     
 Correa-Villaseñor et al (1994)15  Case-control BZD EBV OR 5.4 (95% CI 1.5–19.11) 
 Diav-Citrin et al (2014)16  Prospective cohort Lithium CHD overall aOR 4.75 (95% CI 1.11–20.36) 
 Källén et al (2003)11  Case-control Anticonvulsants CHD overall OR 1.60 (95% CI 1.02–2.52) 
Antidepressants     
 Ban et al (2014)18  Retrospective cohort SSRI CHD overall aOR 1.14 (95% CI 0.89–1.45) 
   Paroxetine  aOR 1.78 (95% CI 1.09–2.88) 
  TCA  aOR 1.03 (95% CI 0.65–1.63) 
  SSRI and TCA  aOR 0.85 (95% CI 0.21–3.42) 
 Grigoriadis et al (2013)19  Systematic review; meta-analysis Antidepressants CHD overall RR 1.36 (95% CI 1.08–1.71) 
   Paroxetine Septal heart defects RR 1.40 (95% CI 1.10–1.77) 
    CHD overall RR 1.43 (95% CI 1.08–1.88) 
 Källén et al (2003)11  Case-control TCA CHD overall OR 1.77 (95% CI 1.07–2.91) 
  Clomipramine CHD overall OR 2.03 (95% CI 1.22–3.40) 
 Pedersen et al (2009)20  Retrospective cohort SSRI Septal heart defects OR 1.99 (95% CI 1.13–3.53) 
   Sertraline  OR 3.25 (95% CI 1.21–8.75) 
   Citalopram  OR 2.52 (95% CI 1.04–6.10) 
   Fluoxetine  OR 1.34 (95% CI 0.33–5.41) 
   ≥2 SSRIs  OR 4.70 (95% CI 1.74–12.7) 

ACEi, angiotensin-converting enzyme inhibitor; aPOR, adjusted prevalence odds ratio; ASD, atrial septal defect; BZD, benzodiazepines; CCB, calcium channel blocker; PVS, pulmonary vein stenosis; RR, risk ratio; SSRI, selective serotonin reuptake inhibitor; TCA, tricyclic antidepressant; TOF, tetralogy of Fallot; VSD, ventricular septal defect.

Ingestion of alcohol or illicit drugs and tobacco use have been widely studied as potential causal factors in CHD. The literature has been largely inconsistent, and most of the positive associations have been moderate at best (Table 2).2229  Dose-response relationships noted in tobacco and marijuana use, alcohol consumption, concomitant alcohol and tobacco use, as well as associations noted only when both parents smoke, highlight the importance of measuring the totality of these types of prenatal exposure through an exposome framework rather than as individual exposures.23,2629 

TABLE 2

Select Studies of Maternal Illicit Drug, Alcohol, and Tobacco Exposure and CHD

StudyStudy DesignSubstanceType of CHDMajor Findings
Illicit drug use     
 Kuehl et al (2002)22  Case-control Cocaine Heterotaxy OR 3.7 (95% CI 1.6–19.1) 
 Williams et al (2004)23  Case-control Marijuana VSD aOR 1.90 (95% CI 1.29–2.81) 
   ≤2 d/wk  cOR 2.20 (95% CI 1.22–3.93) 
   ≥3 d/wk  cOR 3.73 (95% CI 1.56–8.96) 
Tobacco     
 Alverson et al (2011)25  Case-control Tobacco ASD OR 1.36 (95% CI 1.04–1.78) 
   RVOT OR 1.32 (95% CI 1.06–1.65) 
   PVS OR 1.35 (95% CI 1.05–1.74) 
   TA OR 1.90 (95% CI 1.04–3.45) 
   TGA OR 1.79 (95% CI 1.04–3.10) 
 Hackshaw et al (2011)24  Systematic review; meta-analyses Tobacco CHD overall OR 1.09 (95% CI 1.02–1.17) 
 Malik et al (2008)26  Case-control Light tobacco (1–14 per d) Septal defects aOR 1.44 (95% CI 1.18–1.76) 
    ASD aOR 2.02 (95% CI 1.47–2.77) 
  Medium tobacco (15–24 per d) Septal defects aOR 1.50 (95% CI 1.11–2.03) 
    ASD aOR 1.78 (95% CI 1.05–3.01) 
    AVSD aOR 2.18 (95% CI 1.04–4.55) 
  Heavy tobacco (≥25 per d) RVOT aOR 2.35 (95% CI 1.21–4.53) 
   PVS aOR 2.31 (95% CI 1.11–4.83) 
   Septal defects aOR 2.06 (95% CI 1.20–3.54) 
 Wasserman et al (1996)27  Case-control Both parents smoking Conotruncal defects OR 1.9 (95% CI 1.2–3.1) 
  Maternal smoking alone  OR 1.3 (95% CI 0.84 – 2.0) 
  Secondhand smoke  OR 1.3 (95% CI 0.85 – 2.1) 
 Williams et al (2004)23  Case-control Tobacco VSD cOR 1.37 (95% CI 0.85–2.21) 
    1–14 cigarettes per d cOR 1.15 (95% CI 0.66–1.99) 
    15–24 cigarettes per d cOR 0.90 (95% CI 0.23–2.45) 
    >25 cigarettes per d  
Alcohol     
 Carmichael et al (2003)29  Case-control Alcohol <1 per wk Conotruncal defects OR 1.3 (95% CI 1.0–1.9) 
  Alcohol ≥1 per wk  OR 1.9 (95% CI 1.0–3.4) 
  ≥5 drinks at once <1 per wk  OR 1.6 (95% CI 0.8–3.2) 
  ≥5 drinks at once ≥1 per wk  OR 2.4 (95% CI 0.6–9.7) 
 Mateja et al (2012)28  Case-control Binge drinking ≥1 CHD overall aOR 2.99 (95% CI 1.19–7.51) 
  Any binge drinking with cigarette use  aOR 12.65 (95% CI 3.54–45.25) 
  Binge drinking with cigarette use >1  aOR 9.45 (95% CI 2.53 – 35.31) 
 Williams et al (2004)23  Case-control 1–4 drinks per wk VSD cOR 0.95 (95%CI 0.65–1.39) 
  5–9 drinks per wk  cOR 1.22 (95% CI 0.32–3.42) 
  ≥ 10 drinks per wk  cOR 3.13 (95% CI 1.19–8.22) 
    aOR 2.10 (95% CI 0.75–5.87) 
StudyStudy DesignSubstanceType of CHDMajor Findings
Illicit drug use     
 Kuehl et al (2002)22  Case-control Cocaine Heterotaxy OR 3.7 (95% CI 1.6–19.1) 
 Williams et al (2004)23  Case-control Marijuana VSD aOR 1.90 (95% CI 1.29–2.81) 
   ≤2 d/wk  cOR 2.20 (95% CI 1.22–3.93) 
   ≥3 d/wk  cOR 3.73 (95% CI 1.56–8.96) 
Tobacco     
 Alverson et al (2011)25  Case-control Tobacco ASD OR 1.36 (95% CI 1.04–1.78) 
   RVOT OR 1.32 (95% CI 1.06–1.65) 
   PVS OR 1.35 (95% CI 1.05–1.74) 
   TA OR 1.90 (95% CI 1.04–3.45) 
   TGA OR 1.79 (95% CI 1.04–3.10) 
 Hackshaw et al (2011)24  Systematic review; meta-analyses Tobacco CHD overall OR 1.09 (95% CI 1.02–1.17) 
 Malik et al (2008)26  Case-control Light tobacco (1–14 per d) Septal defects aOR 1.44 (95% CI 1.18–1.76) 
    ASD aOR 2.02 (95% CI 1.47–2.77) 
  Medium tobacco (15–24 per d) Septal defects aOR 1.50 (95% CI 1.11–2.03) 
    ASD aOR 1.78 (95% CI 1.05–3.01) 
    AVSD aOR 2.18 (95% CI 1.04–4.55) 
  Heavy tobacco (≥25 per d) RVOT aOR 2.35 (95% CI 1.21–4.53) 
   PVS aOR 2.31 (95% CI 1.11–4.83) 
   Septal defects aOR 2.06 (95% CI 1.20–3.54) 
 Wasserman et al (1996)27  Case-control Both parents smoking Conotruncal defects OR 1.9 (95% CI 1.2–3.1) 
  Maternal smoking alone  OR 1.3 (95% CI 0.84 – 2.0) 
  Secondhand smoke  OR 1.3 (95% CI 0.85 – 2.1) 
 Williams et al (2004)23  Case-control Tobacco VSD cOR 1.37 (95% CI 0.85–2.21) 
    1–14 cigarettes per d cOR 1.15 (95% CI 0.66–1.99) 
    15–24 cigarettes per d cOR 0.90 (95% CI 0.23–2.45) 
    >25 cigarettes per d  
Alcohol     
 Carmichael et al (2003)29  Case-control Alcohol <1 per wk Conotruncal defects OR 1.3 (95% CI 1.0–1.9) 
  Alcohol ≥1 per wk  OR 1.9 (95% CI 1.0–3.4) 
  ≥5 drinks at once <1 per wk  OR 1.6 (95% CI 0.8–3.2) 
  ≥5 drinks at once ≥1 per wk  OR 2.4 (95% CI 0.6–9.7) 
 Mateja et al (2012)28  Case-control Binge drinking ≥1 CHD overall aOR 2.99 (95% CI 1.19–7.51) 
  Any binge drinking with cigarette use  aOR 12.65 (95% CI 3.54–45.25) 
  Binge drinking with cigarette use >1  aOR 9.45 (95% CI 2.53 – 35.31) 
 Williams et al (2004)23  Case-control 1–4 drinks per wk VSD cOR 0.95 (95%CI 0.65–1.39) 
  5–9 drinks per wk  cOR 1.22 (95% CI 0.32–3.42) 
  ≥ 10 drinks per wk  cOR 3.13 (95% CI 1.19–8.22) 
    aOR 2.10 (95% CI 0.75–5.87) 

ASD, atrial septal defect; AVSD, atrioventricular septal defect; cOR, corrected odds ratio; PVS, pulmonary vein stenosis; RVOT, right ventricular outflow tract; TA, tricuspid atresia; TGA, transposition of the great arteries; VSD, ventricular septal defect.

Much attention has been paid to the correlation between chronic and acute maternal disease and CHD. Obesity, diabetes mellitus (DM) type I or II, hypertension, acute febrile illness, thyroid disorders, metabolic derangement (such as hyperlipidemia or hyperhomocysteinemia), connective tissue disease and mental health disorders have all been implicated in the incidence of CHD to varying degrees (Table 3).4,22,3043  Similar to alcohol and tobacco consumption, maternal obesity has been noted repeatedly to have a dose-response relationship with CHD; however, studies examining the synergistic effect of obesity with diabetes, hypertension, and other metabolic or endocrine derangements are lacking.3032  The majority of studies of maternal disease have not differentiated between treated and untreated disease, further obscuring the relationship between medication use, pathophysiologic changes due to disease, and the incidence of CHD.

TABLE 3

Select Studies of Maternal Disease and CHD

StudyStudy DesignDiseaseType of CHDMajor Findings
Obesity     
 Brite et al (2014)31  Retrospective cohort Overweight CHD overall OR 1.15 (95% CI 1.01–1.32) 
  Obese CHD overall OR 1.26 (95% CI 1.09–1.44) 
    Conotruncal OR 1.33 (95% CI 1.03–1.72) 
    ASD OR 1.22 (95% CI 1.04–1.43) 
    VSD OR 1.38 (95% CI 1.06–1.79) 
  Morbidly obese CHD overall OR 1.34 (95% CI 1.02–1.76) 
 Mills et al (2010)30  Case-control Obesity CHD overall aOR 1.15 (95% CI 1.07–1.23) 
   TOF aOR 1.32 (95% CI 1.01–1.72) 
   ASD aOR 1.20 (95% CI 1.05–1.36) 
   LVOTO aOR 1.51 (95% CI 1.05–1.36) 
   HLHA aOR 1.71 (95% CI 1.19–2.46) 
   AVS aOR 2.04 (95% CI 1.44–2.88) 
   RVOTO aOR 1.30 (95% CI 1.10–1.55) 
   PVS aOR 1.29 (95% CI 1.07–1.56) 
 Persson et al (2017)32  Prospective cohort Overweight CHD overall aRR 1.05 (95% CI 1.01–1.08) 
  Obesity class I CHD overall aRR 1.15 (95% CI 1.09 –1.20) 
  Obesity class II CHD overall aRR 1.26 (95% CI 1.16–1.37) 
  Obesity class III CHD overall aRR 1.44 (95% CI 1.27–1.63) 
Febrile/infectious     
 Ács et al (2005)33  Case-control Influenza CHD overall aOR 1.7 (95% CI 1.3–2.3) 
 Ács et al (2008)34  Case-control PID CHD overall OR 2.6 (95% CI 1.2–5.4) 
 Ács et al (2010)36  Case-control Infectious diarrhea at any time during pregnancy CHD overall OR 2.2 (95% CI 1.3–3.8) 
 Cleves et al (2008)35  Case-control UTI CHD overall aOR 1.11 (95% CI 0.92–1.33) 
   LVOT aOR 1.41 (95% CI 1.04–1.93) 
   HLHS aOR 1.61 (95% CI 1.01–2.59) 
   Isolated AVSD aOR 2.29 (95% CI 1.11–4.73) 
DM     
 Correa et al (2008)37  Case-control Pregestational DM CHD overall OR 4.64 (95% CI 2.87–7.51) 
   Isolated  
    TOF OR 4.89 (95% CI 2.18–10.95) 
    dTGA OR 3.34 (95% CI 1.11–10.07) 
    Atrial VSD OR 12.36 (95% CI 3.68–41.49) 
    TAPVR OR 7.12 (95% CI 1.99–25.42) 
    AS OR 5.01 (95% CI 1.09–22.90) 
    LVOT OR 4.58 (95% CI 1.30–16.10) 
    RVOT OR 9.61 (95% CI 3.53–26.15) 
    VSD OR 2.89 (95% CI 1.27–6.56) 
    ASD secundum OR 8.47 (95% CI 4.37–16.42) 
    ASD NOS OR 5.32 (95% CI 1.44–19.68) 
    AVSD OR 5.83 (95% CI 2.48–13.70) 
   Multiple  
    Heterotaxia OR 19.51 (95% CI 4.82–79.0) 
    TOF OR 6.00 (95% CI 1.67–21.58) 
    dTGA OR 71.97 (95% CI 7.43–696.81) 
    Atrial VSD OR 25.28 (95% CI 4.20–152.11) 
    RVOT OR 9.83 (95% CI 1.05–91.85) 
    VSD OR 7.70 (95% CI 2.37–25.04) 
    ASD secundum OR 13.46 (95% CI 5.23–34.60) 
    AVSD OR 9.62 (95% CI 2.95–31.35) 
 Liu et al (2013)4  Prospective cohort DM type I CHD overall aOR 4.65 (95% CI 4.13–5.24) 
    Conotruncal aOR 5.13 (95% CI 3.67–7.17) 
    AVSD aOR 4.90 (95% CI 2.52–9.52) 
    LVOT aOR 4.68 995% CI 2.21–9.92) 
    VSD aOR 3.01 (95% CI 2.11–4.30) 
    ASD aOR 3.69 (95% CI 2.60–5.25) 
    Multiple defects aOR 4.36 (95% CI 2.05–9.28) 
  DM type II CHD overall aOR 4.12 (95% CI 3.69–4.60) 
    Heterotaxia aOR 8.93 (95% CI 5.13–15.5) 
    Conotruncal aOR 3.17 (95% CI 2.18–461) 
    AVSD aOR 2.73 (95% CI 1.34–5.56) 
    LVOT aOR 6.58 (95% CI 3.66–11.8) 
    VSD aOR 3.27 (95% CI 2.42–4.44) 
    ASD aOR 4.15 (95% CI 3.12–5.52) 
    Multiple aOR 2.68 (95% CI 1.18–6.09) 
 Kuehl et al (2002)22  Case-control Pregestational DM Heterotaxy OR 5.5 (95% CI 1.6–19.1) 
 Kuehl et al (2006)38  Case-control Pregestational or gestational DM HLHS OR 6.75 (95% CI 1.85–24.58) 
Hypertension     
 Czeizel et al (2011)39  Case-control Hypertension CHD overall aOR 1.3 (95% CI 1.0–1.5) 
 Liu et al (2013)4  Prospective cohort Hypertension CHD overall aOR 1.81 (95% CI 1.61–2.03) 
    Heterotaxia aOR 1.64 (95% CI 0.72–3.77) 
    Conotruncal aOR 1.71 (95% CI 1.20–2.47) 
    AVSD aOR 1.97 (95% CI 1.07–3.64) 
    LVOT aOR 1.36 (95% CI 0.60–3.09) 
    RVOT aOR 3.17 (95% CI 1.39–7.81) 
    VSD aOR 1.52 (95% CI 1.11–2.09) 
    ASD aOR 3.12 (95% CI 2.41–4.03) 
Thyroid disorder     
 Liu et al (2013)4  Prospective cohort Thyroid disorders CHD overall aOR 1.45 (95% CI 1.26–1.67) 
    Heterotaxia aOR 1.13 (95% CI 0.36–3.54) 
    Conotruncal aOR 2.49 (95% CI 1.77–3.45) 
    AVSD aOR 1.69 (95% CI 0.80–3.58) 
    LVOT aOR 0.83 (95% CI 0.26–2.59) 
    RVOT aOR 1.64 (95% CI 0.92–3.91) 
    VSD aOR 1.46 (95% CI 1.03–2.07) 
    ASD aOR 1.02 (95% CI 0.64–1.62) 
    Multiple aOR 2.56 (95% CI 1.26–5.20) 
Hyperlipidemia     
 Smedts et al (2012)42  Case-control Hyperlipidemia CHD overall OR 1.8 (95% CI 1.2–2.6) 
Hyperhomocysteinemia     
 Hobbs et al (2011)41  Case-control Hyperhomocysteinemia CHD overall OR 1.47 (95% CI 1.22–1.77) 
 Verkleij-Hagoort et al (2006)40  Case-control Hyperhomocysteinemia CHD overall OR 2.9 (95% CI 1.4–6.0) 
Connective tissue disorders     
 Liu et al (2013)4  Prospective cohort Connective tissue disorders CHD overall aOR 3.01 (95% CI 2.23–4.06) 
    Heterotaxia aOR 6.81 (95% CI 1.67–27.7) 
    Conotruncal aOR 0.57 (95% CI 0.08–4.05) 
    AVSD aOR 2.15 (95% CI 0.30–15.4) 
    VSD aOR 2.54 (95% CI 1.13–5.67) 
    ASD aOR 2.93 (95% CI1.31–6.56) 
Mental health     
 Boyle et al (2017)43  Case-control Mental health conditions/medications Ebstein anomaly aOR 2.64 (95% CI 1.33–5.21) 
 Liu et al (2013)4  Prospective cohort Epilepsy and mood disorders CHD overall aOR 1.41 (95% CI 1.16–1.72) 
    Heterotaxia aOR 1.78 (95% CI 0.41–7.92) 
    Conotruncal aOR 0.80 (95% CI 0.35–1.84) 
    AVSD aOR 1.53 (95% CI 0.46–5.14) 
    LVOT aOR 1.79 (95% CI 0.53–6.04) 
    RVOT aOR 2.77 (95% CI 0.78–9.80) 
    VSD aOR 1.25 (95% CI 0.76–2.81) 
    ASD aOR 0.96 (95% CI 0.54–1.71) 
    Multiple aOR 1.20 (95% CI 0.28–5.20) 
StudyStudy DesignDiseaseType of CHDMajor Findings
Obesity     
 Brite et al (2014)31  Retrospective cohort Overweight CHD overall OR 1.15 (95% CI 1.01–1.32) 
  Obese CHD overall OR 1.26 (95% CI 1.09–1.44) 
    Conotruncal OR 1.33 (95% CI 1.03–1.72) 
    ASD OR 1.22 (95% CI 1.04–1.43) 
    VSD OR 1.38 (95% CI 1.06–1.79) 
  Morbidly obese CHD overall OR 1.34 (95% CI 1.02–1.76) 
 Mills et al (2010)30  Case-control Obesity CHD overall aOR 1.15 (95% CI 1.07–1.23) 
   TOF aOR 1.32 (95% CI 1.01–1.72) 
   ASD aOR 1.20 (95% CI 1.05–1.36) 
   LVOTO aOR 1.51 (95% CI 1.05–1.36) 
   HLHA aOR 1.71 (95% CI 1.19–2.46) 
   AVS aOR 2.04 (95% CI 1.44–2.88) 
   RVOTO aOR 1.30 (95% CI 1.10–1.55) 
   PVS aOR 1.29 (95% CI 1.07–1.56) 
 Persson et al (2017)32  Prospective cohort Overweight CHD overall aRR 1.05 (95% CI 1.01–1.08) 
  Obesity class I CHD overall aRR 1.15 (95% CI 1.09 –1.20) 
  Obesity class II CHD overall aRR 1.26 (95% CI 1.16–1.37) 
  Obesity class III CHD overall aRR 1.44 (95% CI 1.27–1.63) 
Febrile/infectious     
 Ács et al (2005)33  Case-control Influenza CHD overall aOR 1.7 (95% CI 1.3–2.3) 
 Ács et al (2008)34  Case-control PID CHD overall OR 2.6 (95% CI 1.2–5.4) 
 Ács et al (2010)36  Case-control Infectious diarrhea at any time during pregnancy CHD overall OR 2.2 (95% CI 1.3–3.8) 
 Cleves et al (2008)35  Case-control UTI CHD overall aOR 1.11 (95% CI 0.92–1.33) 
   LVOT aOR 1.41 (95% CI 1.04–1.93) 
   HLHS aOR 1.61 (95% CI 1.01–2.59) 
   Isolated AVSD aOR 2.29 (95% CI 1.11–4.73) 
DM     
 Correa et al (2008)37  Case-control Pregestational DM CHD overall OR 4.64 (95% CI 2.87–7.51) 
   Isolated  
    TOF OR 4.89 (95% CI 2.18–10.95) 
    dTGA OR 3.34 (95% CI 1.11–10.07) 
    Atrial VSD OR 12.36 (95% CI 3.68–41.49) 
    TAPVR OR 7.12 (95% CI 1.99–25.42) 
    AS OR 5.01 (95% CI 1.09–22.90) 
    LVOT OR 4.58 (95% CI 1.30–16.10) 
    RVOT OR 9.61 (95% CI 3.53–26.15) 
    VSD OR 2.89 (95% CI 1.27–6.56) 
    ASD secundum OR 8.47 (95% CI 4.37–16.42) 
    ASD NOS OR 5.32 (95% CI 1.44–19.68) 
    AVSD OR 5.83 (95% CI 2.48–13.70) 
   Multiple  
    Heterotaxia OR 19.51 (95% CI 4.82–79.0) 
    TOF OR 6.00 (95% CI 1.67–21.58) 
    dTGA OR 71.97 (95% CI 7.43–696.81) 
    Atrial VSD OR 25.28 (95% CI 4.20–152.11) 
    RVOT OR 9.83 (95% CI 1.05–91.85) 
    VSD OR 7.70 (95% CI 2.37–25.04) 
    ASD secundum OR 13.46 (95% CI 5.23–34.60) 
    AVSD OR 9.62 (95% CI 2.95–31.35) 
 Liu et al (2013)4  Prospective cohort DM type I CHD overall aOR 4.65 (95% CI 4.13–5.24) 
    Conotruncal aOR 5.13 (95% CI 3.67–7.17) 
    AVSD aOR 4.90 (95% CI 2.52–9.52) 
    LVOT aOR 4.68 995% CI 2.21–9.92) 
    VSD aOR 3.01 (95% CI 2.11–4.30) 
    ASD aOR 3.69 (95% CI 2.60–5.25) 
    Multiple defects aOR 4.36 (95% CI 2.05–9.28) 
  DM type II CHD overall aOR 4.12 (95% CI 3.69–4.60) 
    Heterotaxia aOR 8.93 (95% CI 5.13–15.5) 
    Conotruncal aOR 3.17 (95% CI 2.18–461) 
    AVSD aOR 2.73 (95% CI 1.34–5.56) 
    LVOT aOR 6.58 (95% CI 3.66–11.8) 
    VSD aOR 3.27 (95% CI 2.42–4.44) 
    ASD aOR 4.15 (95% CI 3.12–5.52) 
    Multiple aOR 2.68 (95% CI 1.18–6.09) 
 Kuehl et al (2002)22  Case-control Pregestational DM Heterotaxy OR 5.5 (95% CI 1.6–19.1) 
 Kuehl et al (2006)38  Case-control Pregestational or gestational DM HLHS OR 6.75 (95% CI 1.85–24.58) 
Hypertension     
 Czeizel et al (2011)39  Case-control Hypertension CHD overall aOR 1.3 (95% CI 1.0–1.5) 
 Liu et al (2013)4  Prospective cohort Hypertension CHD overall aOR 1.81 (95% CI 1.61–2.03) 
    Heterotaxia aOR 1.64 (95% CI 0.72–3.77) 
    Conotruncal aOR 1.71 (95% CI 1.20–2.47) 
    AVSD aOR 1.97 (95% CI 1.07–3.64) 
    LVOT aOR 1.36 (95% CI 0.60–3.09) 
    RVOT aOR 3.17 (95% CI 1.39–7.81) 
    VSD aOR 1.52 (95% CI 1.11–2.09) 
    ASD aOR 3.12 (95% CI 2.41–4.03) 
Thyroid disorder     
 Liu et al (2013)4  Prospective cohort Thyroid disorders CHD overall aOR 1.45 (95% CI 1.26–1.67) 
    Heterotaxia aOR 1.13 (95% CI 0.36–3.54) 
    Conotruncal aOR 2.49 (95% CI 1.77–3.45) 
    AVSD aOR 1.69 (95% CI 0.80–3.58) 
    LVOT aOR 0.83 (95% CI 0.26–2.59) 
    RVOT aOR 1.64 (95% CI 0.92–3.91) 
    VSD aOR 1.46 (95% CI 1.03–2.07) 
    ASD aOR 1.02 (95% CI 0.64–1.62) 
    Multiple aOR 2.56 (95% CI 1.26–5.20) 
Hyperlipidemia     
 Smedts et al (2012)42  Case-control Hyperlipidemia CHD overall OR 1.8 (95% CI 1.2–2.6) 
Hyperhomocysteinemia     
 Hobbs et al (2011)41  Case-control Hyperhomocysteinemia CHD overall OR 1.47 (95% CI 1.22–1.77) 
 Verkleij-Hagoort et al (2006)40  Case-control Hyperhomocysteinemia CHD overall OR 2.9 (95% CI 1.4–6.0) 
Connective tissue disorders     
 Liu et al (2013)4  Prospective cohort Connective tissue disorders CHD overall aOR 3.01 (95% CI 2.23–4.06) 
    Heterotaxia aOR 6.81 (95% CI 1.67–27.7) 
    Conotruncal aOR 0.57 (95% CI 0.08–4.05) 
    AVSD aOR 2.15 (95% CI 0.30–15.4) 
    VSD aOR 2.54 (95% CI 1.13–5.67) 
    ASD aOR 2.93 (95% CI1.31–6.56) 
Mental health     
 Boyle et al (2017)43  Case-control Mental health conditions/medications Ebstein anomaly aOR 2.64 (95% CI 1.33–5.21) 
 Liu et al (2013)4  Prospective cohort Epilepsy and mood disorders CHD overall aOR 1.41 (95% CI 1.16–1.72) 
    Heterotaxia aOR 1.78 (95% CI 0.41–7.92) 
    Conotruncal aOR 0.80 (95% CI 0.35–1.84) 
    AVSD aOR 1.53 (95% CI 0.46–5.14) 
    LVOT aOR 1.79 (95% CI 0.53–6.04) 
    RVOT aOR 2.77 (95% CI 0.78–9.80) 
    VSD aOR 1.25 (95% CI 0.76–2.81) 
    ASD aOR 0.96 (95% CI 0.54–1.71) 
    Multiple aOR 1.20 (95% CI 0.28–5.20) 

aRR, adjusted risk ratio; AS, aortic stenosis; ASD, atrial septal defect; ASD NOS, atrial septal defect not otherwise specified; AVS, aortic valve stenosis; AVSD, atrioventricular septal defect; dTGA, d-transposition of the great arteries; LVOTO, left ventricular outflow tract obstruction; PID, pelvic inflammatory disease; PVS, pulmonary vein stenosis; RVOTO, right ventricular outflow tract obstruction; TAPVR, total anomalous pulmonary venous return; TOF, tetralogy of Fallot; UTI, urinary tract infection; VSD, ventricular septal defect.

Carbon monoxide, sulfur dioxide, and nitric oxide are gaseous pollutants that have been implicated in the development of CHD. Particulate matter are air pollution components particularly associated with proximity to high-traffic geographic areas; most adverse outcomes reported to date are associated with the smallest size of particulate matter: particulate matter <10 μm in diameter (PM10) and/or PM2.5.4450  Methods used to assess air pollution exposure vary; in purely epidemiological approaches, researchers use maternal residence location but cannot assess transplacental exposure or account for duration of exposure, indoor versus outdoor time, or intralocation heterogeneity.4448  Alternatively, biological assay-based models of exposure rely on direct measurement of levels of exposure through placental and umbilical cord sampling (Table 4).49,50  Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants from coal and tobacco smoke: maternal PAH inhalation and/or consumption leads to fetal exposure, as evidenced by PAH presence in placental tissue and umbilical cord blood.49  Limitations that must be addressed to maximize the benefit of human placental measurement for fetal toxin exposure include the need for standardization of placental sampling.51 

TABLE 4

Select Studies of Maternal Pollution Exposure and CHD

StudyStudy DesignPollutantType of CHDMajor Findings
Epidemiology-based methods, traditional analysis methods     
 Dadvand et al (2011)45  Case-control CO VSD OR 2.634 (95% CI 1.871–3.707) 
  NO PVS OR 2.682 (95% CI 1.298 –5.534) 
   CHD overall OR 1.005 (95% CI 1.001–1.009) 
   TOF OR 1.017 (95% CI 1.005–1.032) 
 Dadvand et al (2011)46  Case-control Black smoke CHD overall OR 1.02 (95% CI 1.01–1.03) 
  SO2 CHD overall OR 0.967 (95% CI 0.957–0.977) 
 Gianicolo et al (2014)44  Case-control SO2 CHD overall OR 3.21 (95% CI 1.42–7.25) 
   VSD OR 4.57 (95% CI 1.31–15.96) 
 Liu et al (2017)47  Case-control PM10 CHD overall Days 41–50/second quartile of PM exposure: aOR 1.28 (95% CI 1.03–1.61) 
   VSD Days 31–40/second quartile of PM exposure: aOR 1.21 (95% CI 1.01–1.53) 
    Days 41–50/second quartile of PM exposure: aOR 1.19 (95% CI 1.00–1.43) 
   TOF Days 31–40/second quartile of PM exposure: aOR 1.44 (95% CI 1.01–2.19) 
   ASD Second month/second quartile of PM exposure: aOR 2.07 (95% CI 1.19–3.22) 
    Days 21–30/second quartile of PM exposure: aOR 1.29 (95% CI 1.05–1.74) 
    Days 31–40/second quartile of PM exposure: aOR 2.17 (95% CI 1.29–3.64) 
    Days 31–40/third quartile of PM exposure: aOR 1.33 (95% CI 1.07–1.85) 
    Days 41–50/second quartile of PM exposure: aOR 1.88 (95% CI 1.22–2.75) 
   PDA Second month/second quartile of PM exposure: aOR 1.59 (95% CI 1.03–3.00) 
    Days 31–40/second quartile of PM exposure: aOR 1.54 (95% CI 11.17–2.23) 
    Days 41–50/second quartile of PM exposure: aOR 1.63 (95% CI 1.06–3.24) 
 Zhang et al (2016)48  Cohort PM10 CHD overall Second month of pregnancy: aOR 0.99 (95% CI 0.92–1.05) 
    Third month of pregnancy: aOR 0.98 (0.93–1.05) 
  PM2.5 CHD overall  
    Second month of pregnancy: aOR 1.10 (95% CI 1.03–1.18) 
    Third month of pregnancy: aOR 1.08 (95% CI 1.01–1.16) 
Specific associations of pollution exposure with CHD: biological assay-based methods     
 Li et al (2018)49  Case-control PAH CHD overall aOR 2.029 (95% CI 1.266–3.251) 
 Tao et al (2019)50  Case-control PAH exposure and EPHX1 SNP rs4653436 with guanine/guanine genotype CHD overall aOR 1.990 (95% CI 1.107–3.578) 
  PAH exposure and EPHX1 SNP rs1051740 with thymine/thymine genotype  aOR 3.642 (95% CI 1.517–8.744) 
  thymine/cytosine or cytosine/cytosine genotypes  aOR 3.606 (95% CI 1.578–8.239) 
StudyStudy DesignPollutantType of CHDMajor Findings
Epidemiology-based methods, traditional analysis methods     
 Dadvand et al (2011)45  Case-control CO VSD OR 2.634 (95% CI 1.871–3.707) 
  NO PVS OR 2.682 (95% CI 1.298 –5.534) 
   CHD overall OR 1.005 (95% CI 1.001–1.009) 
   TOF OR 1.017 (95% CI 1.005–1.032) 
 Dadvand et al (2011)46  Case-control Black smoke CHD overall OR 1.02 (95% CI 1.01–1.03) 
  SO2 CHD overall OR 0.967 (95% CI 0.957–0.977) 
 Gianicolo et al (2014)44  Case-control SO2 CHD overall OR 3.21 (95% CI 1.42–7.25) 
   VSD OR 4.57 (95% CI 1.31–15.96) 
 Liu et al (2017)47  Case-control PM10 CHD overall Days 41–50/second quartile of PM exposure: aOR 1.28 (95% CI 1.03–1.61) 
   VSD Days 31–40/second quartile of PM exposure: aOR 1.21 (95% CI 1.01–1.53) 
    Days 41–50/second quartile of PM exposure: aOR 1.19 (95% CI 1.00–1.43) 
   TOF Days 31–40/second quartile of PM exposure: aOR 1.44 (95% CI 1.01–2.19) 
   ASD Second month/second quartile of PM exposure: aOR 2.07 (95% CI 1.19–3.22) 
    Days 21–30/second quartile of PM exposure: aOR 1.29 (95% CI 1.05–1.74) 
    Days 31–40/second quartile of PM exposure: aOR 2.17 (95% CI 1.29–3.64) 
    Days 31–40/third quartile of PM exposure: aOR 1.33 (95% CI 1.07–1.85) 
    Days 41–50/second quartile of PM exposure: aOR 1.88 (95% CI 1.22–2.75) 
   PDA Second month/second quartile of PM exposure: aOR 1.59 (95% CI 1.03–3.00) 
    Days 31–40/second quartile of PM exposure: aOR 1.54 (95% CI 11.17–2.23) 
    Days 41–50/second quartile of PM exposure: aOR 1.63 (95% CI 1.06–3.24) 
 Zhang et al (2016)48  Cohort PM10 CHD overall Second month of pregnancy: aOR 0.99 (95% CI 0.92–1.05) 
    Third month of pregnancy: aOR 0.98 (0.93–1.05) 
  PM2.5 CHD overall  
    Second month of pregnancy: aOR 1.10 (95% CI 1.03–1.18) 
    Third month of pregnancy: aOR 1.08 (95% CI 1.01–1.16) 
Specific associations of pollution exposure with CHD: biological assay-based methods     
 Li et al (2018)49  Case-control PAH CHD overall aOR 2.029 (95% CI 1.266–3.251) 
 Tao et al (2019)50  Case-control PAH exposure and EPHX1 SNP rs4653436 with guanine/guanine genotype CHD overall aOR 1.990 (95% CI 1.107–3.578) 
  PAH exposure and EPHX1 SNP rs1051740 with thymine/thymine genotype  aOR 3.642 (95% CI 1.517–8.744) 
  thymine/cytosine or cytosine/cytosine genotypes  aOR 3.606 (95% CI 1.578–8.239) 

ASD, atrial septal defect; CO, carbon monoxide; EPHX1, epoxide hydrolase 1; NO, nitric oxide; PDA, patent ductus arteriosus; PM, particulate matter; PVS, pulmonary vein stenosis; SNP, single-nucleotide polymorphism; SO2, sulfur dioxide; TOF, tetralogy of Fallot; VSD, ventricular septal defect.

The World Health Organization estimates that 25% of congenital disorders can be attributed to environmental pollution exposure.52  Maternal heavy metal exposure, including lead, nickel, arsenic, cadmium, and manganese, has been associated with the incidence of CHD, in addition to pesticide and organic chemical solvent exposure (Table 5).5360  Hair and fetal placental sampling avoids the self-reporting bias of other occupational exposure studies; differences in the level of nickel in samples among septal defects, conotruncal defects, and outflow tract obstruction have been observed, suggesting varying levels of exposure may confer a risk to specific types of CHD.54,55  A strong synergistic interaction between arsenic and cadmium exposure has also been noted, conferring a ninefold, positive association with CHD, emphasizing the importance of studying the degree and interplay of environmental exposures.54 

TABLE 5

Select Studies of Maternal Metal, Chemical, and Toxin Exposure and CHD

StudyStudy DesignExposureType of CHDMajor Findings
Maternal metal, chemical, and toxin exposures     
 Liu et al (2015)53  Case-control Lead CHD overall aOR 3.07 (95% CI 2.00–4.72) 
 Zhang et al (2019)55  Case-control Nickel (maternal hair) CHD overall aOR 2.672 (95% CI 1.623–4.399) 
  High exposure (>0.7216 ng/mg)  Septal defects aOR 2.919 (95% CI 1.647–5.175) 
    Conotruncal defects aOR 2.305 (95% CI 1.209–4.733) 
    RVOTO aOR 2.396 (95% CI 1.213–4.733) 
    LVOTO aOR 2.554 (95% CI 0.880–7.418) 
  Medium exposure (0.4111- 0.7216 ng/mg) CHD overall aOR 2.917 (95% CI 1.829–4.654) 
    Septal defects aOR 3.486 (95% CI 2.031–5.982) 
    Conotruncal defects aOR 3.051 (95% CI 1.660–5.607) 
    RVOTO aOR 3.294 (95% CI 1.767–6.141) 
    LVOTO aOR 2.995 (95% CI 1.126–7.967) 
  Nickel (fetal placental tissue) Other heart defects aOR 4.538 (95% CI 1.153–17.853) 
  High exposure (>0.2658 ng/mg)   
 Jin et al (2016)54  Case control Arsenic, ng/g   
   62.03-85.85 CHD overall aOR 2.34 (95% CI 1.46–3.76) 
   85.85-117.75  aOR 3.61 (95% CI 2.23–5.83) 
   >117.8  aOR 5.62 (95% CI 3.43–9.24) 
  Cadmium, ng/g CHD overall  
   7.23-12.95  aOR 1.09 (95% CI 0.69–1.70) 
   12.95-25.85  aOR 1.06 (95% CI 0.67–1.67) 
   >25.85  aOR 1.96 (95% CI 1.24–3.09) 
  Arsenic and cadmium interaction (both at high concentrations) CHD overall OR 8.92 (95% CI 3.48–22.90) 
Maternal drinking water exposure     
 Rudnai et al (2014)57  Case-control Arsenic >10 ug/L in tap water CHD overall aOR 1.41 (95% CI 1.28–1.56) 
 Sanders et al (2014)56  Semiecological Manganese Conotruncal defects PR 1.6 (95% CI 1.1–2.5) 
Maternal pesticide exposure     
 Rocheleau et al (2015)58  Case-control Insecticides CHD overall aOR 0.96 (95% CI 0.83–1.11) 
  Insecticides and herbicides HLHS aOR 3.15 (95% CI 1.27–7.82) 
  Insecticides, herbicides, and fungicides Secundum ASD aOR 1.66.2 (95% CI 1.04–2.66) 
Maternal organic chemical exposure     
 Gilboa et al (2012)59  Case-control Expert consensus approach   
  Any solvent CHD overall OR 1.2 (95% CI 0.9–1.6) 
    Perimembranous VSD OR 1.6 (95% CI 1.0–2.6) 
  Chlorinated solvents CHD overall OR 1.2 (95% CI 0.9–1.6) 
    Perimembranous VSD OR 1.7 (95% CI 1.0–2.8) 
  Stoddard solvents CHD overall OR 1.2 (95% CI 0.7–1.9) 
   CHD overall OR 1.1 (95% CI 0.9–1.4) 
    Aortic Stenosis OR 2.1 (95% CI 1.1–4.1) 
  Literature approach   
  Any solvent CHD overall OR 1.1 (95% CI 0.9–1.4) 
  Chlorinated solvents CHD overall OR 1.1 (95% CI 0.8–1.3) 
  Stoddard solvents CHD overall OR 1.2 (95% CI 0.8–1.7) 
    dTGA OR 2.0 (95% CI 1.0–4.2) 
    RVOTO OR 1.9 (95% CI 1.1–3.3) 
    PVS OR 2.1 (95% CI 1.1–3.8) 
 Wang et al (2015)60  Case-control Phthalates Perimembranous VSD aOR 3.7 (95% CI 1.7–8.0) 
   PDA aOR 3.8 (95% CI 1.6–8.9) 
   Secundum ASD aOR 3.5 (95% CI 1.4–8.7) 
   PVS aOR 4.2 (95% CI 1.1–16.0) 
  Alkylphenolic compounds Perimembranous VSD aOR 2.2 (95% CI 1.3–3.6) 
   PDA aOR 2.0 (95% CI 1.1–3.5) 
   PVS aOR 3.8 (95% CI 1.5–9.4) 
StudyStudy DesignExposureType of CHDMajor Findings
Maternal metal, chemical, and toxin exposures     
 Liu et al (2015)53  Case-control Lead CHD overall aOR 3.07 (95% CI 2.00–4.72) 
 Zhang et al (2019)55  Case-control Nickel (maternal hair) CHD overall aOR 2.672 (95% CI 1.623–4.399) 
  High exposure (>0.7216 ng/mg)  Septal defects aOR 2.919 (95% CI 1.647–5.175) 
    Conotruncal defects aOR 2.305 (95% CI 1.209–4.733) 
    RVOTO aOR 2.396 (95% CI 1.213–4.733) 
    LVOTO aOR 2.554 (95% CI 0.880–7.418) 
  Medium exposure (0.4111- 0.7216 ng/mg) CHD overall aOR 2.917 (95% CI 1.829–4.654) 
    Septal defects aOR 3.486 (95% CI 2.031–5.982) 
    Conotruncal defects aOR 3.051 (95% CI 1.660–5.607) 
    RVOTO aOR 3.294 (95% CI 1.767–6.141) 
    LVOTO aOR 2.995 (95% CI 1.126–7.967) 
  Nickel (fetal placental tissue) Other heart defects aOR 4.538 (95% CI 1.153–17.853) 
  High exposure (>0.2658 ng/mg)   
 Jin et al (2016)54  Case control Arsenic, ng/g   
   62.03-85.85 CHD overall aOR 2.34 (95% CI 1.46–3.76) 
   85.85-117.75  aOR 3.61 (95% CI 2.23–5.83) 
   >117.8  aOR 5.62 (95% CI 3.43–9.24) 
  Cadmium, ng/g CHD overall  
   7.23-12.95  aOR 1.09 (95% CI 0.69–1.70) 
   12.95-25.85  aOR 1.06 (95% CI 0.67–1.67) 
   >25.85  aOR 1.96 (95% CI 1.24–3.09) 
  Arsenic and cadmium interaction (both at high concentrations) CHD overall OR 8.92 (95% CI 3.48–22.90) 
Maternal drinking water exposure     
 Rudnai et al (2014)57  Case-control Arsenic >10 ug/L in tap water CHD overall aOR 1.41 (95% CI 1.28–1.56) 
 Sanders et al (2014)56  Semiecological Manganese Conotruncal defects PR 1.6 (95% CI 1.1–2.5) 
Maternal pesticide exposure     
 Rocheleau et al (2015)58  Case-control Insecticides CHD overall aOR 0.96 (95% CI 0.83–1.11) 
  Insecticides and herbicides HLHS aOR 3.15 (95% CI 1.27–7.82) 
  Insecticides, herbicides, and fungicides Secundum ASD aOR 1.66.2 (95% CI 1.04–2.66) 
Maternal organic chemical exposure     
 Gilboa et al (2012)59  Case-control Expert consensus approach   
  Any solvent CHD overall OR 1.2 (95% CI 0.9–1.6) 
    Perimembranous VSD OR 1.6 (95% CI 1.0–2.6) 
  Chlorinated solvents CHD overall OR 1.2 (95% CI 0.9–1.6) 
    Perimembranous VSD OR 1.7 (95% CI 1.0–2.8) 
  Stoddard solvents CHD overall OR 1.2 (95% CI 0.7–1.9) 
   CHD overall OR 1.1 (95% CI 0.9–1.4) 
    Aortic Stenosis OR 2.1 (95% CI 1.1–4.1) 
  Literature approach   
  Any solvent CHD overall OR 1.1 (95% CI 0.9–1.4) 
  Chlorinated solvents CHD overall OR 1.1 (95% CI 0.8–1.3) 
  Stoddard solvents CHD overall OR 1.2 (95% CI 0.8–1.7) 
    dTGA OR 2.0 (95% CI 1.0–4.2) 
    RVOTO OR 1.9 (95% CI 1.1–3.3) 
    PVS OR 2.1 (95% CI 1.1–3.8) 
 Wang et al (2015)60  Case-control Phthalates Perimembranous VSD aOR 3.7 (95% CI 1.7–8.0) 
   PDA aOR 3.8 (95% CI 1.6–8.9) 
   Secundum ASD aOR 3.5 (95% CI 1.4–8.7) 
   PVS aOR 4.2 (95% CI 1.1–16.0) 
  Alkylphenolic compounds Perimembranous VSD aOR 2.2 (95% CI 1.3–3.6) 
   PDA aOR 2.0 (95% CI 1.1–3.5) 
   PVS aOR 3.8 (95% CI 1.5–9.4) 

ASD, atrial septal defect; dTGA, d-transposition of the great arteries; LVOTO, left ventricular outflow tract obstruction; PDA, patent ductus arteriosus; PR, prevalence ratio; PVS, pulmonary vein stenosis; RVOTO, right ventricular outflow tract obstruction; VSD, ventricular septal defect.

Paternal occupational exposures, such as metal and jewelry manufacturing, welding, lead soldering, paint stripping and exposure to ionizing radiation, medication use, tobacco, marijuana, and wine use have also been shown to have associations with the incidence of CHD in their offspring (Table 6).6166 

TABLE 6

Select Studies of Paternal Exposures and CHD

StudyStudy DesignExposureType of CHDMajor Findings
Paternal occupational exposure     
 Silver et al (2016)62  Cohort Metal and hydrocarbons VSD Population: SPR 1.58 (95% CI 0.99–2.39); cohort: SPR 2.70 (95% CI 1.06–6.67) 
 Correa-Villaseñor et al (1993)61  Case-control Jewelry ASD OR 12.6 (95% CI 2.3–68.6) 
  Welding Membranous VSD OR 8.1 (95% CI 2.0–33.3) 
  Lead soldering Endocardial cushion defect with Down syndrome OR 12.6 (95% CI 2.3–68.6) 
  Ionizing radiation Pulmonary atresia OR 2.3 (95% CI 1.1–4.9) 
  Paint stripping Endocardial cushion defect without Down syndrome OR 4.7 (95% CI 1.7–12.6) 
   HLHS (+ family history) OR 11.9 (95% CI 2.4–60.0) 
Paternal alcohol, tobacco, illicit drug exposure     
 Peng et al (2019)64  Systematic review; meta-analyses Tobacco (light smoking) CHD OR 1.19 (95% CI 0.82–1.71) 
  (Medium smoking)  OR 1.41 (95% CI 1.20–1.67) 
  (Heavy smoking)  OR 1.75 (95% CI 1.10–2.80) 
  Wine CHD OR 1.47 (95% CI 1.05–2.07) 
 Aryana et al (2007)65  Systematic review Marijuana TGA AF 7.8 (95% CI 2.8–12.7) 
StudyStudy DesignExposureType of CHDMajor Findings
Paternal occupational exposure     
 Silver et al (2016)62  Cohort Metal and hydrocarbons VSD Population: SPR 1.58 (95% CI 0.99–2.39); cohort: SPR 2.70 (95% CI 1.06–6.67) 
 Correa-Villaseñor et al (1993)61  Case-control Jewelry ASD OR 12.6 (95% CI 2.3–68.6) 
  Welding Membranous VSD OR 8.1 (95% CI 2.0–33.3) 
  Lead soldering Endocardial cushion defect with Down syndrome OR 12.6 (95% CI 2.3–68.6) 
  Ionizing radiation Pulmonary atresia OR 2.3 (95% CI 1.1–4.9) 
  Paint stripping Endocardial cushion defect without Down syndrome OR 4.7 (95% CI 1.7–12.6) 
   HLHS (+ family history) OR 11.9 (95% CI 2.4–60.0) 
Paternal alcohol, tobacco, illicit drug exposure     
 Peng et al (2019)64  Systematic review; meta-analyses Tobacco (light smoking) CHD OR 1.19 (95% CI 0.82–1.71) 
  (Medium smoking)  OR 1.41 (95% CI 1.20–1.67) 
  (Heavy smoking)  OR 1.75 (95% CI 1.10–2.80) 
  Wine CHD OR 1.47 (95% CI 1.05–2.07) 
 Aryana et al (2007)65  Systematic review Marijuana TGA AF 7.8 (95% CI 2.8–12.7) 

AF, attributable fraction; ASD, atrial septal defect; SPR, standardized prevalence ratio; TGA, transposition of the great arteries; VSD, ventricular septal defect.

Given the broad, heterogenous nature of environmental exposures that have been studied, clinicians’ understanding of what risk factors are the most common and potentially modifiable becomes paramount. Although the exact prevalence of these risk factors remains largely unknown, certain exposures, such as maternal obesity and diabetes, are known to be among the most commonly encountered. Exposure to pollution is also ubiquitous, with an estimated 92% of the world’s population affected; however, exact knowledge of levels of pollution at exact days and windows of pregnancy to determine true exposure remains challenging. Of the risk factors studied, those with the highest correlations to incidence of CHD overall include binge drinking in tandem with cigarette use (odds ratio [OR] 12.65, 95% confidence interval [CI] 3.54–45.25),28  maternal diabetes (OR 6.75 [95% CI 1.85–24.58]),38  and maternal medication exposure, including nitrofurantoins (adjusted odds ratio [aOR] 4.2, 95% CI 1.9–9.1),13  benzodiazepines (OR 5.4, 95% CI 1.5–19.11),15  and dual selective serotonin reuptake inhibitor (SSRI) exposure (OR 4.7, 95% CI 1.74–12.7).20  The majority of these risk factors are modifiable with perinatal interventions, including weight loss and avoidance of known toxins, such as tobacco and alcohol. However, the clinical picture is less clear when differentiating between the risk of maternal disease versus the risk of maternal medications for disease management. Approaching this question from the framework of the exposome, in which maternal disease, medication usage, and other external environmental factors can be accounted for simultaneously, will further clinicians’ ability to predict and modify risk in vulnerable populations.

Cardiac development begins shortly after implantation of the fertilized embryo in the uterine wall; differentiation of cardiomyocytes begins by postconception day 16, and circulation, including a beating heart, presents by day 21 and completion of human cardiac morphologic development by 8 weeks.3  Therefore, many CHDs occur before knowledge of pregnancy, which obfuscates the ability to screen and intervene before the development of cardiac anomalies. Despite this barrier, there has been great effort to study potential causal pathways beyond genetic mutations in the incidence of CHD, including the recent development of validated machine learning models for predicting periconceptional risk of CHD, and identification of potential microRNA biomarkers for the early detection of ventricular septal defect.67,68 

There is a growing awareness of the interplay between placental and cardiac development, a phenomenon termed the “heart-placental axis,” which signifies the parallel development of both the placenta and the heart with use of common genes and molecular pathways.3,6972  Maternal disease, ingestion of medications, drugs, exposure to environmental chemicals and toxins, and nutritional imbalances may play a role in disrupting these pathways; however, the exact mechanisms remain unelucidated.3  Two pathways that have been implicated as having key importance in both placental and cardiac development are the canonical Wnt/β-catenin pathway and the folate metabolism pathway.3,6972  Even a single exposure to lithium, ethanol, or homocysteine during days 16 to 19 postconception can lead to abnormal blood flow in the umbilical artery, leading to misexpression of Wnt-mediated genes and placental, heart, and valvular defects.3,69  Multiple studies have shown the effect of intersection of genes and environment, including maternal obesity; tobacco, occupational, and solvent exposure; and folate use.22,7377  This intersection may lie in as simple a concept as how their synergistic effects change placental blood flow.78 

The yolk sac becomes vascularized at ∼24 days postconception, with vascularization of the chorioallantoic placenta happening shortly thereafter; variations in either of these extraembryonic circulations can impact cardiac development.71,79  During the early stages of pregnancy, hypoxia prevents the invasion of trophoblasts into the uterus; in later stages, the trophoblast cells migrate and replace the maternal vascular wall within the uterine wall, creating a low-resistance state that encourages oxygen and nutrient exchange.79  The maintenance of a hypoxic environment and prohibition of premature trophoblast invasion has been shown to be mediated by numerous cytokines, such as tumor necrosis factor α, interleukin 1α, and interleukin 1β.79  This suggests that an acute infectious illness leading to upregulation of these cytokines at the right gestational time period could lead to alteration in proper transition to the invasive trophoblast phenotype, ultimately leading to impaired placental angiogenesis. Deficiency in endothelial nitric oxide synthase has been shown to lead to decreased uterine blood flow, placental oxygenation, and spiral artery elongation in murine models. Certain classes of antidepressants modulate the hippocampal nitric oxide level in vivo; however, no studies have been done to date to explore the effect of antidepressants on placental levels of endothelial nitric oxide synthase.80,81  Notably, both chronic and acute prenatal exposure to bupropion may be linked to reduced uterine blood flow, focusing on the role of serotonin as a known uterine vasoconstrictor.82  Inactivation of placental p38 mitogen-activated protein kinase has also been shown to reduce maternal-fetal vascularization of the placenta causing severe cardiac defects in a murine model; pathways by which exposure to environmental chemicals and toxins that may exert an effect on p38 mitogen-activated protein kinase should be explored further.83  Other possible mechanisms of placental vascular insufficiency include deficiency of peroxisome proliferator-activated receptor γ, a nuclear hormone receptor, which has been shown to interfere with trophoblast differentiation and vascularization of the placenta, leading to severe myocardial thinning and death in knock-out mice models.84  Notably, peroxisome proliferator-activated receptor γ is a target of many medications used in the treatment of DM type II and is heavily involved in metabolic derangements, such as obesity and DM type II.84 

Additionally, the overexpression of growth arrest and DNA damage-inducible 45 α, a small acidic protein involved in DNA repair and mitogen-activate protein kinase modulation, in syncytiotrophoblasts, extravillous trophoblast cells, and trophoblast columns of placental villi has been associated with impaired migration and invasion of trophoblasts, leading to decreased angiogenesis.85,86  Given that the growth arrest and DNA damage-inducible 45 family of proteins are susceptible to acute environmental and physiologic stresses, such as hypoxia, transient ischemia, and angiotensin II, there are multiple ways that maternal environmental exposures may lead to high expression of placental growth arrest and DNA damage-inducible 45 α.85,86  Knock-out of small ubiquitin-related modifier–specific protease 2 (SENP2) is associated with cardiac dysgenesis, specifically the absence of SENP2 in the developing placenta leading to thinning of the myocardium, absence of atrioventricular cushions, and CHD with hypoplastic chambers.87  Interestingly, in a recent report, the Epstein-Barr virus (EBV) latent membrane protein-1 has been described as independently decreasing SENP2 activity and turnover, in addition to altering the localization of SENP2.88  Given the high prevalence of EBV infection, this presents a unique opportunity to study the correlation between maternal previous EBV infection, SENP2 expression within the placenta, and the incidence of CHD.

These proposed mechanisms of impaired placental development and vascularization may be the key to further understanding the heart-placental axis and the interplay between general and specific external factors and the incidence of CHD. Further study of these associations and mechanisms is required through clinical case-control studies of exposed cohorts, basic science studies focusing on the association between individual and collective environmental exposures and the hypothesized mechanism, and basic science studies of the association between the hypothesized mechanism and the incidence of CHD in in vitro and small animal in vivo models. Further elucidation of these mechanisms could identify targets for drug development to optimize periconceptional placental development and vascularization; this would complement preventive public health interventions to decrease CHD occurrence, including decreasing prenatal exposure and improving prenatal education on risk-factor avoidance.

One of the greatest barriers to evaluating the effect of abnormal blood flow on the development of CHD is the lack of technological ability to study the internal vasculature and morphology of the placenta in early stages of pregnancy. In a study of infants born with HLHS, placental analysis revealed reduced surface area for oxygen and nutrient exchange and reduced vasculature and abnormal parenchyma, suggesting that the immaturity of the placenta may be due to vascular abnormalities.89  However, others have noted normal umbilical artery blood flow by Doppler ultrasound in pregnancies complicated by HLHS, implying the need for alternative ways to assess actual placental vascularization and functionality.8991  This argument is particularly compelling when noting that in a study of the uterine artery pulsatility index at 11 to 13 weeks’ gestation in 68 cases of isolated fetal CHD, there was no significant difference between cases and controls.92  However, that same study revealed a significantly lower level of a member of the vascular endothelial growth factor family, maternal serum placental growth factor, indicating that even in the absence of identifiable impairment of placental perfusion, placental angiogenesis can be affected.92  Similarly, reduced expression of vascular endothelial growth factor receptor 1 and vascular endothelial growth factor receptor 3 in preeclamptic and preeclamptic with hemolysis–elevated enzyme–low platelet count placentas has been documented.93  Microcomputed tomography has been used to visualize the fetoplacental arterial tree in ex-vivo murine placentas, with identification of decreased arterial vascularization in those with exposure to cigarette smoke; however, more advances will be needed to safely use this technique in vivo.94 

To date, our understanding of the effect of general and specific external factors on CHD has been limited by adopting a siloed approach of studying specific exposures and failing to account for the totality and synergy of both maternal and paternal exposures. There are multiple areas in which these factors may synergistically influence proper placental vascularization and subsequent fetal growth and development; however, as of yet, a comprehensive model to assess the complete exposome has not been used. The inherent complexity and resources required to generate such a model have been barriers in furthering our understanding of the mechanisms contributing to the incidence of CHD. Although completion of such a complex project may be beyond the realm of current possibility, continued advances in the emerging field of the exposome and establishment of a bank of exposomic data from epidemiological studies will be required to make significant inroads in development of this model. The process itself of adopting such a framework is imperative in advancing our understanding of the causes of CHD because the model will constantly require scrutinization and additions.

Ms Boyd and Ms McMullen conceptualized and designed the study, drafted the initial manuscript, and reviewed and revised the manuscript; Mr Beqaj substantially contributed to analysis of data and critically reviewed and revised the manuscript; Dr Kalfa conceptualized and designed the study and critically reviewed the manuscript for important intellectual content; and all authors approved the final manuscript as submitted.

FUNDING: No external funding.

aOR

adjusted odds ratio

CHD

congenital heart disease

CI

confidence interval

CoA

coarctation of the aorta

DM

diabetes mellitus

EBV

Epstein-Barr virus

HLHS

hypoplastic left heart syndrome

NSAID

nonsteroidal antiinflammatory drug

OR

odds ratio

PAH

polycyclic aromatic hydrocarbon

PM2.5

particulate matter <2.5 μm in diameter

PM10

particulate matter <10 μm in diameter

SENP2

small ubiquitin-related modifier–specific protease 2

1
Mitchell
SC
,
Korones
SB
,
Berendes
HW
.
Congenital heart disease in 56,109 births. Incidence and natural history
.
Circulation.
1971
;
43
(
3
):
323
332
2
Hoffman
JI
.
The global burden of congenital heart disease
.
Cardiovasc J Afr.
2013
;
24
(
4
):
141
145
3
Huhta
J
,
Linask
KK
.
Environmental origins of congenital heart disease: the heart-placenta connection
.
Semin Fetal Neonatal Med.
2013
;
18
(
5
):
245
250
4
Liu
S
,
Joseph
KS
,
Lisonkova
S
, et al;
Canadian Perinatal Surveillance System (Public Health Agency of Canada)
.
Association between maternal chronic conditions and congenital heart defects: a population-based cohort study
.
Circulation.
2013
;
128
(
6
):
583
589
5
Liang
Q
,
Gong
W
,
Zheng
D
,
Zhong
R
,
Wen
Y
,
Wang
X
.
The influence of maternal exposure history to virus and medicine during pregnancy on congenital heart defects of fetus
.
Environ Sci Pollut Res Int.
2017
;
24
(
6
):
5628
5632
6
Wild
CP
.
Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology
.
Cancer Epidemiol Biomarkers Prev.
2005
;
14
(
8
):
1847
1850
7
DeBord
DG
,
Carreón
T
,
Lentz
TJ
,
Middendorf
PJ
,
Hoover
MD
,
Schulte
PA
.
Use of the “Exposome” in the practice of epidemiology: a primer on -omic technologies
.
Am J Epidemiol.
2016
;
184
(
4
):
302
314
8
Caton
AR
,
Bell
EM
,
Druschel
CM
, et al;
National Birth Defects Prevention Study
.
Antihypertensive medication use during pregnancy and the risk of cardiovascular malformations
.
Hypertension.
2009
;
54
(
1
):
63
70
9
Eghtesady
P
,
Brar
A
,
Hall
M
.
Seasonality of hypoplastic left heart syndrome in the United States: a 10-year time-series analysis
.
J Thorac Cardiovasc Surg.
2011
;
141
(
2
):
432
438
10
Miettinen
OS
,
Reiner
ML
,
Nadas
AS
.
Seasonal incidence of coarctation of the aorta
.
Br Heart J.
1970
;
32
(
1
):
103
107
11
Källén
BA
,
Otterblad Olausson
P
.
Maternal drug use in early pregnancy and infant cardiovascular defect
.
Reprod Toxicol.
2003
;
17
(
3
):
255
261
12
Källén
BA
,
Otterblad Olausson
P
,
Danielsson
BR
.
Is erythromycin therapy teratogenic in humans?
Reprod Toxicol.
2005
;
20
(
2
):
209
214
13
Crider
KS
,
Cleves
MA
,
Reefhuis
J
,
Berry
RJ
,
Hobbs
CA
,
Hu
DJ
.
Antibacterial medication use during pregnancy and risk of birth defects: National Birth Defects Prevention Study
.
Arch Pediatr Adolesc Med.
2009
;
163
(
11
):
978
985
14
Czeizel
AE
,
Puhó
E
,
Sørensen
HT
,
Olsen
J
.
Possible association between different congenital abnormalities and use of different sulfonamides during pregnancy
.
Congenit Anom (Kyoto).
2004
;
44
(
2
):
79
86
15
Correa-Villaseñor
A
,
Ferencz
C
,
Neill
CA
,
Wilson
PD
,
Boughman
JA
;
The Baltimore-Washington Infant Study Group
.
Ebstein’s malformation of the tricuspid valve: genetic and environmental factors
.
Teratology.
1994
;
50
(
2
):
137
147
16
Diav-Citrin
O
,
Shechtman
S
,
Tahover
E
, et al
.
Pregnancy outcome following in utero exposure to lithium: a prospective, comparative, observational study
.
Am J Psychiatry.
2014
;
171
(
7
):
785
794
17
Ericson
A
,
Källén
BA
.
Nonsteroidal anti-inflammatory drugs in early pregnancy
.
Reprod Toxicol.
2001
;
15
(
4
):
371
375
18
Ban
L
,
Gibson
JE
,
West
J
, et al
.
Maternal depression, antidepressant prescriptions, and congenital anomaly risk in offspring: a population-based cohort study
.
BJOG.
2014
;
121
(
12
):
1471
1481
19
Grigoriadis
S
,
VonderPorten
EH
,
Mamisashvili
L
, et al
.
Antidepressant exposure during pregnancy and congenital malformations: is there an association? A systematic review and meta-analysis of the best evidence
.
J Clin Psychiatry.
2013
;
74
(
4
):
e293
e308
20
Pedersen
LH
,
Henriksen
TB
,
Vestergaard
M
,
Olsen
J
,
Bech
BH
.
Selective serotonin reuptake inhibitors in pregnancy and congenital malformations: population based cohort study
.
BMJ.
2009
;
339
:
b3569
21
Rey
E
,
Couturier
A
.
The prognosis of pregnancy in women with chronic hypertension
.
Am J Obstet Gynecol.
1994
;
171
(
2
):
410
416
22
Kuehl
KS
,
Loffredo
C
.
Risk factors for heart disease associated with abnormal sidedness
.
Teratology.
2002
;
66
(
5
):
242
248
23
Williams
LJ
,
Correa
A
,
Rasmussen
S
.
Maternal lifestyle factors and risk for ventricular septal defects
.
Birth Defects Res A Clin Mol Teratol.
2004
;
70
(
2
):
59
64
[Part A]
24
Hackshaw
A
,
Rodeck
C
,
Boniface
S
.
Maternal smoking in pregnancy and birth defects: a systematic review based on 173 687 malformed cases and 11.7 million controls
.
Hum Reprod Update.
2011
;
17
(
5
):
589
604
25
Alverson
CJ
,
Strickland
MJ
,
Gilboa
SM
,
Correa
A
.
Maternal smoking and congenital heart defects in the Baltimore-Washington Infant Study
.
Pediatrics.
2011
;
127
(
3
):
e647
e653
26
Malik
S
,
Cleves
MA
,
Honein
MA
, et al;
National Birth Defects Prevention Study
.
Maternal smoking and congenital heart defects
.
Pediatrics.
2008
;
121
(
4
).
27
Wasserman
CR
,
Shaw
GM
,
O’Malley
CD
,
Tolarova
MM
,
Lammer
EJ
.
Parental cigarette smoking and risk for congenital anomalies of the heart, neural tube, or limb
.
Teratology.
1996
;
53
(
4
):
261
267
28
Mateja
WA
,
Nelson
DB
,
Kroelinger
CD
,
Ruzek
S
,
Segal
J
.
The association between maternal alcohol use and smoking in early pregnancy and congenital cardiac defects
.
J Womens Health (Larchmt).
2012
;
21
(
1
):
26
34
29
Carmichael
SL
,
Shaw
GM
,
Yang
W
,
Lammer
EJ
.
Maternal periconceptional alcohol consumption and risk for conotruncal heart defects
.
Birth Defects Res A Clin Mol Teratol.
2003
;
67
(
10
):
875
878
30
Mills
JL
,
Troendle
J
,
Conley
MR
,
Carter
T
,
Druschel
CM
.
Maternal obesity and congenital heart defects: a population-based study
.
Am J Clin Nutr.
2010
;
91
(
6
):
1543
1549
31
Brite
J
,
Laughon
SK
,
Troendle
J
,
Mills
J
.
Maternal overweight and obesity and risk of congenital heart defects in offspring
.
Int J Obes.
2014
;
38
(
6
):
878
882
32
Persson
M
,
Cnattingius
S
,
Villamor
E
, et al
.
Risk of major congenital malformations in relation to maternal overweight and obesity severity: cohort study of 1.2 million singletons
.
BMJ.
2017
;
357
:
j2563
33
Ács
N
,
Bánhidy
F
,
Puhó
E
,
Czeizel
AE
.
Maternal influenza during pregnancy and risk of congenital abnormalities in offspring
.
Birth Defects Res A Clin Mol Teratol.
2005
;
73
(
12
):
989
996
34
Ács
N
,
Bánhidy
F
,
Puhó
EH
,
Czeizel
AE
.
Possible association between acute pelvic inflammatory disease in pregnant women and congenital abnormalities in their offspring: a population-based case-control study
.
Birth Defects Res A Clin Mol Teratol.
2008
;
82
(
8
):
563
570
35
Cleves
MA
,
Malik
S
,
Yang
S
,
Carter
TC
,
Hobbs
CA
.
Maternal urinary tract infections and selected cardiovascular malformations
.
Birth Defects Res A Clin Mol Teratol.
2008
;
82
(
6
):
464
473
36
Ács
N
,
Bánhidy
F
,
Puhó
EH
,
Czeizel
AE
.
A possible association between acute infectious diarrhoea in pregnant women and congenital abnormalities in their offspring--a population-based case-control study
.
Scand J Infect Dis.
2010
;
42
(
5
):
359
367
37
Correa
A
,
Gilboa
SM
,
Besser
LM
, et al
.
Diabetes mellitus and birth defects
.
Am J Obstet Gynecol.
2008
;
199
(
3
):
237.e1
237.e9
38
Kuehl
KS
,
Loffredo
CA
.
A cluster of hypoplastic left heart malformation in Baltimore, Maryland
.
Pediatr Cardiol.
2006
;
27
(
1
):
25
31
39
Czeizel
AE
,
Bánhidy
F
.
Chronic hypertension in pregnancy
.
Curr Opin Obstet Gynecol.
2011
;
23
(
2
):
76
81
40
Verkleij-Hagoort
AC
,
Verlinde
M
,
Ursem
NTC
, et al
.
Maternal hyperhomocysteinaemia is a risk factor for congenital heart disease
.
BJOG.
2006
;
113
(
12
):
1412
1418
41
Hobbs
CA
,
MacLeod
SL
,
Jill James
S
,
Cleves
MA
.
Congenital heart defects and maternal genetic, metabolic, and lifestyle factors
.
Birth Defects Res A Clin Mol Teratol.
2011
;
91
(
4
):
195
203
42
Smedts
HPM
,
van Uitert
EM
,
Valkenburg
O
, et al
.
A derangement of the maternal lipid profile is associated with an elevated risk of congenital heart disease in the offspring
.
Nutr Metab Cardiovasc Dis.
2012
;
22
(
6
):
477
485
43
Boyle
B
,
Garne
E
,
Loane
M
, et al
.
The changing epidemiology of Ebstein’s anomaly and its relationship with maternal mental health conditions: a European registry-based study
.
Cardiol Young.
2017
;
27
(
4
):
677
685
44
Gianicolo
EAL
,
Mangia
C
,
Cervino
M
,
Bruni
A
,
Andreassi
MG
,
Latini
G
.
Congenital anomalies among live births in a high environmental risk area--a case-control study in Brindisi (southern Italy)
.
Environ Res.
2014
;
128
:
9
14
45
Dadvand
P
,
Rankin
J
,
Rushton
S
,
Pless-Mulloli
T
.
Ambient air pollution and congenital heart disease: a register-based study
.
Environ Res.
2011
;
111
(
3
):
435
441
46
Dadvand
P
,
Rankin
J
,
Rushton
S
,
Pless-Mulloli
T
.
Association between maternal exposure to ambient air pollution and congenital heart disease: a register-based spatiotemporal analysis
.
Am J Epidemiol.
2011
;
173
(
2
):
171
182
47
Liu
CB
,
Hong
XR
,
Shi
M
, et al
.
Effects of prenatal PM10 exposure on fetal cardiovascular malformations in Fuzhou, China: a retrospective case-control study
.
Environ Health Perspect.
2017
;
125
(
5
):
057001
48
Zhang
B
,
Liang
S
,
Zhao
J
, et al
.
Maternal exposure to air pollutant PM2.5 and PM10 during pregnancy and risk of congenital heart defects
.
J Expo Sci Environ Epidemiol.
2016
;
26
(
4
):
422
427
49
Li
N
,
Mu
Y
,
Liu
Z
, et al
.
Assessment of interaction between maternal polycyclic aromatic hydrocarbons exposure and genetic polymorphisms on the risk of congenital heart diseases
.
Sci Rep.
2018
;
8
(
1
):
3075
50
Tao
J
,
Li
N
,
Liu
Z
, et al
.
The effect on congenital heart diseases of maternal EPHX1 polymorphisms modified by polycyclic aromatic hydrocarbons exposure
.
Medicine (Baltimore).
2019
;
98
(
30
):
e16556
51
Luyten
LJ
,
Saenen
ND
,
Janssen
BG
, et al
.
Air pollution and the fetal origin of disease: a systematic review of the molecular signatures of air pollution exposure in human placenta
.
Environ Res.
2018
;
166
:
310
323
52
World Health Organization
.
Preventing Disease Through Healthy Environments: Toward an Estimate of the Environmental Burden of Disease.
Geneva, Switzerland
:
World Health Organization
;
2006
53
Liu
Z
,
Yu
Y
,
Li
X
, et al
.
Maternal lead exposure and risk of congenital heart defects occurrence in offspring
.
Reprod Toxicol.
2015
;
51
:
1
6
54
Jin
X
,
Tian
X
,
Liu
Z
, et al
.
Maternal exposure to arsenic and cadmium and the risk of congenital heart defects in offspring
.
Reprod Toxicol.
2016
;
59
:
109
116
55
Zhang
N
,
Chen
M
,
Li
J
, et al
.
Metal nickel exposure increase the risk of congenital heart defects occurrence in offspring: a case-control study in China
.
Medicine (Baltimore).
2019
;
98
(
18
):
e15352
56
Sanders
AP
,
Desrosiers
TA
,
Warren
JL
, et al
.
Association between arsenic, cadmium, manganese, and lead levels in private wells and birth defects prevalence in North Carolina: a semi-ecologic study
.
BMC Public Health.
2014
;
14
:
955
57
Rudnai
T
,
Sándor
J
,
Kádár
M
, et al
.
Arsenic in drinking water and congenital heart anomalies in Hungary
.
Int J Hyg Environ Health.
2014
;
217
(
8
):
813
818
58
Rocheleau
CM
,
Bertke
SJ
,
Lawson
CC
, et al;
National Birth Defects Prevention Study
.
Maternal occupational pesticide exposure and risk of congenital heart defects in the National Birth Defects Prevention Study
.
Birth Defects Res A Clin Mol Teratol.
2015
;
103
(
10
):
823
833
59
Gilboa
SM
,
Desrosiers
TA
,
Lawson
C
, et al;
National Birth Defects Prevention Study
.
Association between maternal occupational exposure to organic solvents and congenital heart defects, National Birth Defects Prevention Study, 1997-2002
.
Occup Environ Med.
2012
;
69
(
9
):
628
635
60
Wang
C
,
Zhan
Y
,
Wang
F
, et al
.
Parental occupational exposures to endocrine disruptors and the risk of simple isolated congenital heart defects
.
Pediatr Cardiol.
2015
;
36
(
5
):
1024
1037
61
Correa-Villaseñor
A
,
Ferencz
C
,
Loffredo
C
,
Magee
C
;
The Baltimore-Washington Infant Study Group
.
Paternal exposures and cardiovascular malformations
.
J Expo Anal Environ Epidemiol.
1993
;
3
(
suppl 1
):
173
185
62
Silver
SR
,
Pinkerton
LE
,
Rocheleau
CM
,
Deddens
JA
,
Michalski
AM
,
Van Zutphen
AR
.
Birth defects in infants born to employees of a microelectronics and business machine manufacturing facility
.
Birth Defects Res A Clin Mol Teratol.
2016
;
106
(
8
):
696
707
63
Gu
Y
,
Ru
T
,
Zhou
YH
,
Hu
Y
.
Adefovir as a possible teratogen: evidence from paternal exposure
.
Dig Liver Dis.
2014
;
46
(
12
):
1134
1135
64
Peng
J
,
Meng
Z
,
Zhou
S
, et al
.
The non-genetic paternal factors for congenital heart defects: A systematic review and meta-analysis
.
Clin Cardiol.
2019
;
42
(
7
):
684
691
65
Aryana
A
,
Williams
MA
.
Marijuana as a trigger of cardiovascular events: speculation or scientific certainty?
Int J Cardiol.
2007
;
118
(
2
):
141
144
66
Su
XJ
,
Yuan
W
,
Huang
GY
,
Olsen
J
,
Li
J
.
Paternal age and offspring congenital heart defects: a national cohort study
.
PLoS One.
2015
;
10
(
3
):
e0121030
67
Luo
Y
,
Li
Z
,
Guo
H
, et al
.
Predicting congenital heart defects: A comparison of three data mining methods
.
PLoS One.
2017
;
12
(
5
):
e0177811
68
Radhakrishna
U
,
Albayrak
S
,
Zafra
R
, et al
.
Placental epigenetics for evaluation of fetal congenital heart defects: Ventricular Septal Defect (VSD)
.
PLoS One.
2019
;
14
(
3
):
e0200229
69
Linask
KK
.
The heart-placenta axis in the first month of pregnancy: induction and prevention of cardiovascular birth defects
.
J Pregnancy.
2013
;
2013
:
320413
70
Albalawi
A
,
Brancusi
F
,
Askin
F
, et al
.
Placental characteristics of fetuses with congenital heart disease
.
J Ultrasound Med.
2017
;
36
(
5
):
965
972
71
Burton
GJ
,
Jauniaux
E
.
Development of the human placenta and fetal heart: synergic or independent?
Front Physiol.
2018
;
9
:
373
383
72
Courtney
JA
,
Cnota
JF
,
Jones
HN
.
The role of abnormal placentation in congenital heart disease; cause, correlate, or consequence?
Front Physiol.
2018
;
9
:
1045
1053
73
Li
X
,
Liu
Z
,
Deng
Y
, et al
.
Modification of the association between maternal smoke exposure and congenital heart defects by polymorphisms in glutathione S-transferase genes
.
Sci Rep.
2015
;
5
:
14915
74
Tang
X
,
Nick
TG
,
Cleves
MA
, et al
.
Maternal obesity and tobacco use modify the impact of genetic variants on the occurrence of conotruncal heart defects
.
PLoS One.
2014
;
9
(
9
):
e108903
75
Tang
X
,
Hobbs
CA
,
Cleves
MA
,
Erickson
SW
,
MacLeod
SL
,
Malik
S
;
National Birth Defects Prevention Study
.
Genetic variation affects congenital heart defect susceptibility in offspring exposed to maternal tobacco use
.
Birth Defects Res A Clin Mol Teratol.
2015
;
103
(
10
):
834
842
76
Lammer
EJ
,
Shaw
GM
,
Iovannisci
DM
,
Van Waes
J
,
Finnell
RH
.
Maternal smoking and the risk of orofacial clefts: Susceptibility with NAT1 and NAT2 polymorphisms
.
Epidemiology.
2004
;
15
(
2
):
150
156
77
Maslen
CL
.
Recent advances in placenta-heart interactions
.
Front Physiol.
2018
;
9
:
735
78
Ford
SM
,
McPheeters
MT
,
Wang
YT
, et al
.
Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease
.
Congenit Heart Dis.
2017
;
12
(
3
):
322
331
79
Linask
KK
,
Han
M
,
Bravo-Valenzuela
NJM
.
Changes in vitelline and utero-placental hemodynamics: implications for cardiovascular development
.
Front Physiol.
2014
;
5
:
390
402
80
Kulandavelu
S
,
Whiteley
KJ
,
Qu
D
,
Mu
J
,
Bainbridge
SA
,
Adamson
SL
.
Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice
.
Hypertension.
2012
;
60
(
1
):
231
238
81
Wegener
G
,
Volke
V
.
Nitric oxide synthase inhibitors as antidepressants
.
Pharmaceuticals (Basel).
2010
;
3
(
1
):
273
299
82
Monk
C
,
Newport
DJ
,
Korotkin
JH
,
Long
Q
,
Knight
B
,
Stowe
ZN
.
Uterine blood flow in a psychiatric population: impact of maternal depression, anxiety, and psychotropic medication
.
Biol Psychiatry.
2012
;
72
(
6
):
483
490
83
Adams
RH
,
Porras
A
,
Alonso
G
, et al
.
Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development
.
Mol Cell.
2000
;
6
(
1
):
109
116
84
Barak
Y
,
Nelson
MC
,
Ong
ES
, et al
.
PPAR γ is required for placental, cardiac, and adipose tissue development
.
Mol Cell.
1999
;
4
(
4
):
585
595
85
Liu
X
,
Mu
H
,
Luo
X
, et al
.
Expression of Gadd45α in human early placenta and its role in trophoblast invasion
.
Placenta.
2014
;
35
(
6
):
370
377
86
Lucas
A
,
Mialet-Perez
J
,
Daviaud
D
,
Parini
A
,
Marber
MS
,
Sicard
P
.
Gadd45γ regulates cardiomyocyte death and post-myocardial infarction left ventricular remodelling
.
Cardiovasc Res.
2015
;
108
(
2
):
254
267
87
Maruyama
EO
,
Lin
H
,
Chiu
SY
,
Yu
HM
,
Porter
GA
,
Hsu
W
.
Extraembryonic but not embryonic SUMO-specific protease 2 is required for heart development
.
Sci Rep.
2016
;
6
:
20999
88
Selby
TL
,
Biel
N
,
Varn
M
, et al
.
The Epstein-Barr virus oncoprotein, LMP1, regulates the function of SENP2, a SUMO-protease
.
Sci Rep.
2019
;
9
(
1
):
9523
89
Jones
HN
,
Olbrych
SK
,
Smith
KL
, et al
.
Hypoplastic left heart syndrome is associated with structural and vascular placental abnormalities and leptin dysregulation
.
Placenta.
2015
;
36
(
10
):
1078
1086
90
McElhinney
DB
,
Benson
CB
,
Brown
DW
, et al
.
Cerebral blood flow characteristics and biometry in fetuses undergoing prenatal intervention for aortic stenosis with evolving hypoplastic left heart syndrome
.
Ultrasound Med Biol.
2010
;
36
(
1
):
29
37
91
Donofrio
MT
,
Bremer
YA
,
Schieken
RM
, et al
.
Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect
.
Pediatr Cardiol.
2003
;
24
(
5
):
436
443
92
Llurba
E
,
Syngelaki
A
,
Sánchez
O
,
Carreras
E
,
Cabero
L
,
Nicolaides
KH
.
Maternal serum placental growth factor at 11-13 weeks’ gestation and fetal cardiac defects
.
Ultrasound Obstet Gynecol.
2013
;
42
(
2
):
169
174
93
Marini
M
,
Vichi
D
,
Toscano
A
, et al
.
Expression of vascular endothelial growth factor receptor types 1, 2 and 3 in placenta from pregnancies complicated by hypertensive disorders
.
Reprod Fertil Dev.
2007
;
19
(
5
):
641
651
94
Rennie
MY
,
Sled
JG
,
Adamson
SL
.
Effects of genes and environment on the fetoplacental arterial microcirculation in mice revealed by micro-computed tomography imaging
.
Am J Physiol Heart Circ Physiol.
2014
;
302
:
H1261
H1273

Competing Interests

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.