TABLE 1

Different Measures of Validity and Reliability

TypeDefinitionStatistical Measures and Their General Interpretation of Minimum Levels of Acceptability
Reliability 
Internal consistency Items that are measuring the same construct should have correlated results Omega >0.7 is acceptable, >0.8 is excellent, >0.9 suggests item redundancya 
Cronbach α 
Split-half reliability 
Test-tetest Survey items have temporal stability Correlation coefficients dependent upon type of datab
Pearson r for continuous variables |0.3|-|0.49| is weak correlation 
|0.5|- |0.69| is moderate 
|0.7| - |0.89| is strong 
Spearman ρ for ordinal variables |0.9| - |1| is very strong 
Tetrachoric correlation coefficient for dichotomous variables Note: Positive values indicate positive correlation, whereas negative values indicate negative correlation 
Validity 
Construct 
Exploratory factor analysis Statistical technique to reduce data into theoretical “factors” of the construct of interest Number of factors to be determined byc,d
 Kaiser-Guttman rule Number of factors is equal to the number of factors with eigenvalues >1.0 
 Scree plot “Elbow” of the graph where eigenvalues level off is the point of significant factors 
 Parallel analysis Retain the number of factors where eigenvalues of the sample data are higher than those from simulated data 
Confirmatory factor analysis Statistical technique to confirm if data fit hypothesized factor structure Model fit usinge
 Root mean squared error of approximation <0.06 excellent 
 Comparative fit index >0.90 acceptable, >0.95 excellent 
 Tucker-Lewis index >0.90 acceptable, >0.95 excellent 
 Goodness of fit indices >0.95 acceptable 
 Standardized root mean squared residual <0.8 acceptable fit 
Convergent Ability to strongly positively or negatively correlate with other instruments that measure similar constructs Correlation coefficients dependent upon type of datab
Pearson r for continuous variables |0.3|-|0.49| is weak correlation 
|0.5|- |0.69| is moderate 
Divergent Ability to not correlate with other instruments that measure not-similar constructs Spearman ρ for ordinal variables |0.7| - |0.89| is strong 
|0.9| - |1| is very strong 
Tetrachoric correlation coefficient for dichotomous variables Note: Positive values indicate positive correlation, whereas negative values indicate negative correlation 
Criterion 
Concurrent Ability of an instrument to predict current outcomes Correlation coefficients dependent upon type of datab
Pearson r for continuous variables |0.3|-|0.49| is weak correlation 
|0.5|- |0.69| is moderate 
Predictive Ability of an instrument to predict future outcomes Spearman ρ for ordinal variables |0.7| - |0.89| is strong 
|0.9| - |1| is very strong 
  Tetrachoric correlation coefficient for dichotomous variables Note: Positive values indicate positive correlation, whereas negative values indicate negative correlation 
Known group and divergent Comparing known groups on survey outcomes to detect hypothesized differences t tests, analyses of variance, regression models, etc. 
TypeDefinitionStatistical Measures and Their General Interpretation of Minimum Levels of Acceptability
Reliability 
Internal consistency Items that are measuring the same construct should have correlated results Omega >0.7 is acceptable, >0.8 is excellent, >0.9 suggests item redundancya 
Cronbach α 
Split-half reliability 
Test-tetest Survey items have temporal stability Correlation coefficients dependent upon type of datab
Pearson r for continuous variables |0.3|-|0.49| is weak correlation 
|0.5|- |0.69| is moderate 
|0.7| - |0.89| is strong 
Spearman ρ for ordinal variables |0.9| - |1| is very strong 
Tetrachoric correlation coefficient for dichotomous variables Note: Positive values indicate positive correlation, whereas negative values indicate negative correlation 
Validity 
Construct 
Exploratory factor analysis Statistical technique to reduce data into theoretical “factors” of the construct of interest Number of factors to be determined byc,d
 Kaiser-Guttman rule Number of factors is equal to the number of factors with eigenvalues >1.0 
 Scree plot “Elbow” of the graph where eigenvalues level off is the point of significant factors 
 Parallel analysis Retain the number of factors where eigenvalues of the sample data are higher than those from simulated data 
Confirmatory factor analysis Statistical technique to confirm if data fit hypothesized factor structure Model fit usinge
 Root mean squared error of approximation <0.06 excellent 
 Comparative fit index >0.90 acceptable, >0.95 excellent 
 Tucker-Lewis index >0.90 acceptable, >0.95 excellent 
 Goodness of fit indices >0.95 acceptable 
 Standardized root mean squared residual <0.8 acceptable fit 
Convergent Ability to strongly positively or negatively correlate with other instruments that measure similar constructs Correlation coefficients dependent upon type of datab
Pearson r for continuous variables |0.3|-|0.49| is weak correlation 
|0.5|- |0.69| is moderate 
Divergent Ability to not correlate with other instruments that measure not-similar constructs Spearman ρ for ordinal variables |0.7| - |0.89| is strong 
|0.9| - |1| is very strong 
Tetrachoric correlation coefficient for dichotomous variables Note: Positive values indicate positive correlation, whereas negative values indicate negative correlation 
Criterion 
Concurrent Ability of an instrument to predict current outcomes Correlation coefficients dependent upon type of datab
Pearson r for continuous variables |0.3|-|0.49| is weak correlation 
|0.5|- |0.69| is moderate 
Predictive Ability of an instrument to predict future outcomes Spearman ρ for ordinal variables |0.7| - |0.89| is strong 
|0.9| - |1| is very strong 
  Tetrachoric correlation coefficient for dichotomous variables Note: Positive values indicate positive correlation, whereas negative values indicate negative correlation 
Known group and divergent Comparing known groups on survey outcomes to detect hypothesized differences t tests, analyses of variance, regression models, etc. 
a

Tavakol M, Dennick R. Making sense of Cronbach’s α. Int J Med Educ. 2011;2:53–55.

b

Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):1763–1768.

c

Kline TJB. Psychological Testing: A Practical Approach to Design and Evaluation. Sage Publications; 2005.

d

Watkins MW. Exploratory factor analysis: a guide to best practice. J Black Psychol. 2018;44(3):219–246.

e

Brown TA. Confirmatory factor analysis for applied research. The Guilford Press; 2006.

Close Modal

or Create an Account

Close Modal
Close Modal