Skip to Main Content
TABLE 15

Endocrine Causes of HTN

Name of DisorderGenetic MutationMode of InheritanceClinical Feature(s)Biochemical Mechanism and NotesRef No(s).
Catecholamine excess 
 PCC, paraganglioma VHL (49%) De novo, AD HTN Diagnostic test: fractionated plasmaa and/or urine metanephrines and normetanephrines 248–254  
SDHB (15%) Palpitations, headache, sweating  
SDHD (10%) Abdominal mass  
RET Incidental radiographic finding  
 Family screening  
Mineralocorticoid excess 
 Specific etiologies addressed below Screening test: ARR: PAC, PRA preferably obtained between 8:00 and 10:00 am 255,256  
 Consider if: 
  Early onset HTN 
  Potassium level abnormalities 
  Family history of primary aldosteronism 
  Resistant HTN 
Congenital adrenal hyperplasia 
 11β–hydroxylase deficiency CYP11B1 (loss of function) AR HTN Elevated levels of DOC, 11-deoxycortisol, androstenedione, testosterone, and DHEAS 257–259  
Hypokalemia Higher prevalence in Moroccan Jews 
Acne, hirsutism, and virilization in girls  
Pseudoprecocious puberty in boys  
11% of congenital adrenal hyperplasia  
 17-α hydroxylase deficiency CYP17 (loss of function) AR HTN and hypokalemia Elevated DOC and corticosterone 260–262  
Low aldosterone and renin Decreased androstenedione, testosterone and DHEAS 
Undervirilized boys, sexual infantilism in girls Prominent in Dutch Mennonites 
<1% of congenital adrenal hyperplasia  
Familial hyperaldosteronism 
 Type 1 Hybrid CYP11B1 and CYP11B2 (11β-hydroxylase–aldosterone synthase, gain of function) AD Young subjects with PA Excessive, ACTH-regulated aldosterone production 263,264  
Family history of young strokes Prescription with low-dose dexamethasone 
 May add low-dose spironolactone, calcium channel blocker, or potassium supplementation 
 Type 2 Unknown, possibly 7p22 AD (prevalence varies from 1.2% to 6%) PA in the patient with an affected first-degree relative Excessive autonomous aldosterone production 265–267  
Unresponsive to dexamethasone 
May have adrenal adenoma or bilateral adrenal hyperplasia 
 Type 3 KCNJ5 G-protein potassium channel (loss of function) AD Early onset severe HTN in the first family described Mutation leads to loss of potassium+ sensitivity causing sodium+ influx that activates Ca++ channels, leading to aldosterone synthesis 268–270  
Milder phenotypes also seen 
 Type 4 CACNA1D coding for calcium channel (gain of function) AD PA and HTN age <10 y Increased Ca++ channel sensitivity causing increased aldosterone synthesis 271,272  
Variable developmental abnormalities 
Other genetic causes 
 Carney complex PRKAR1A AD Skin pigmentation Rare familial cause 273,274  
Pituitary and other tumors 
 McCune Albright syndrome GNAS, α-subunit Somatic Cutaneous pigmentation Tumors in the breast, thyroid, pituitary gland, or testicles may be present 275,276  
Fibrous dysplasia 
 Primary glucocorticoid resistance (Chrousos syndrome) NR3C1 (loss of function glucocorticoid receptor) AD HTN Loss of function of glucocorticoid receptor 277–279  
Ambiguous genitalia  
Precocious puberty  
Androgen excess, menstrual abnormalities or infertility in women  
 Apparent mineralocorticoid excess HSD11B2 (loss of function) AR HTN Reduced or absent activity of 11 β-HSD2: cortisol gains access to MR 280,281  
Hypokalemia Mimicked by licorice toxicity 
Low birth weight  
Failure to thrive  
Polyuria, polydipsia  
 Liddle syndrome SCNN1B β-subunit–SCNN1G γ-subunit (activating mutation)  Severe HTN Constitutive activation of the epithelial sodium channel causing salt retention and volume expansion 282,283  
Hypokalemia 
Metabolic alkalosis 
Muscle weakness 
 Geller syndrome MCR (mineralocorticoid-d receptor, activating mutation) AD Onset of HTN <20 y Constitutive activation of MR 284  
Exacerbated by pregnancy Also activated by progesterone 
 Pseudohypo-aldosteronism type 2 (Gordon syndrome) WNK1,4; KLHL3; CUL3; SPAK (activating mutation) AD Short stature Increased activity of sodium chloride cotransporter causing salt retention and volume expansion 285–287  
Hyperkalemic and hyperchloremic metabolic acidosis 
Borderline HTN 
Glucocorticoid excess 
 Cushing syndrome, adrenocortical carcinoma, iatrogenic excess To be discovered — HTN Likely attributable to increased DOC, sensitivity to vasoconstriction, cardiac output, activation of RAS 288–290  
Other signs of Cushing syndrome 
Other endocrine abnormalities 
 Hyperthyroidism To be discovered — Tachycardia Mechanism increased cardiac output, stroke volume, and decreased peripheral resistance 291,292  
HTN Initial prescription with β blockers 
Tremors  
Other signs of hyperthyroidism  
 Hyperparathyroidism — — Hypercalcemia Mechanism unknown, may not remit after treatment of hyperparathyroidism 293,294  
Other signs of hyperparathyroidism 
Name of DisorderGenetic MutationMode of InheritanceClinical Feature(s)Biochemical Mechanism and NotesRef No(s).
Catecholamine excess 
 PCC, paraganglioma VHL (49%) De novo, AD HTN Diagnostic test: fractionated plasmaa and/or urine metanephrines and normetanephrines 248–254  
SDHB (15%) Palpitations, headache, sweating  
SDHD (10%) Abdominal mass  
RET Incidental radiographic finding  
 Family screening  
Mineralocorticoid excess 
 Specific etiologies addressed below Screening test: ARR: PAC, PRA preferably obtained between 8:00 and 10:00 am 255,256  
 Consider if: 
  Early onset HTN 
  Potassium level abnormalities 
  Family history of primary aldosteronism 
  Resistant HTN 
Congenital adrenal hyperplasia 
 11β–hydroxylase deficiency CYP11B1 (loss of function) AR HTN Elevated levels of DOC, 11-deoxycortisol, androstenedione, testosterone, and DHEAS 257–259  
Hypokalemia Higher prevalence in Moroccan Jews 
Acne, hirsutism, and virilization in girls  
Pseudoprecocious puberty in boys  
11% of congenital adrenal hyperplasia  
 17-α hydroxylase deficiency CYP17 (loss of function) AR HTN and hypokalemia Elevated DOC and corticosterone 260–262  
Low aldosterone and renin Decreased androstenedione, testosterone and DHEAS 
Undervirilized boys, sexual infantilism in girls Prominent in Dutch Mennonites 
<1% of congenital adrenal hyperplasia  
Familial hyperaldosteronism 
 Type 1 Hybrid CYP11B1 and CYP11B2 (11β-hydroxylase–aldosterone synthase, gain of function) AD Young subjects with PA Excessive, ACTH-regulated aldosterone production 263,264  
Family history of young strokes Prescription with low-dose dexamethasone 
 May add low-dose spironolactone, calcium channel blocker, or potassium supplementation 
 Type 2 Unknown, possibly 7p22 AD (prevalence varies from 1.2% to 6%) PA in the patient with an affected first-degree relative Excessive autonomous aldosterone production 265–267  
Unresponsive to dexamethasone 
May have adrenal adenoma or bilateral adrenal hyperplasia 
 Type 3 KCNJ5 G-protein potassium channel (loss of function) AD Early onset severe HTN in the first family described Mutation leads to loss of potassium+ sensitivity causing sodium+ influx that activates Ca++ channels, leading to aldosterone synthesis 268–270  
Milder phenotypes also seen 
 Type 4 CACNA1D coding for calcium channel (gain of function) AD PA and HTN age <10 y Increased Ca++ channel sensitivity causing increased aldosterone synthesis 271,272  
Variable developmental abnormalities 
Other genetic causes 
 Carney complex PRKAR1A AD Skin pigmentation Rare familial cause 273,274  
Pituitary and other tumors 
 McCune Albright syndrome GNAS, α-subunit Somatic Cutaneous pigmentation Tumors in the breast, thyroid, pituitary gland, or testicles may be present 275,276  
Fibrous dysplasia 
 Primary glucocorticoid resistance (Chrousos syndrome) NR3C1 (loss of function glucocorticoid receptor) AD HTN Loss of function of glucocorticoid receptor 277–279  
Ambiguous genitalia  
Precocious puberty  
Androgen excess, menstrual abnormalities or infertility in women  
 Apparent mineralocorticoid excess HSD11B2 (loss of function) AR HTN Reduced or absent activity of 11 β-HSD2: cortisol gains access to MR 280,281  
Hypokalemia Mimicked by licorice toxicity 
Low birth weight  
Failure to thrive  
Polyuria, polydipsia  
 Liddle syndrome SCNN1B β-subunit–SCNN1G γ-subunit (activating mutation)  Severe HTN Constitutive activation of the epithelial sodium channel causing salt retention and volume expansion 282,283  
Hypokalemia 
Metabolic alkalosis 
Muscle weakness 
 Geller syndrome MCR (mineralocorticoid-d receptor, activating mutation) AD Onset of HTN <20 y Constitutive activation of MR 284  
Exacerbated by pregnancy Also activated by progesterone 
 Pseudohypo-aldosteronism type 2 (Gordon syndrome) WNK1,4; KLHL3; CUL3; SPAK (activating mutation) AD Short stature Increased activity of sodium chloride cotransporter causing salt retention and volume expansion 285–287  
Hyperkalemic and hyperchloremic metabolic acidosis 
Borderline HTN 
Glucocorticoid excess 
 Cushing syndrome, adrenocortical carcinoma, iatrogenic excess To be discovered — HTN Likely attributable to increased DOC, sensitivity to vasoconstriction, cardiac output, activation of RAS 288–290  
Other signs of Cushing syndrome 
Other endocrine abnormalities 
 Hyperthyroidism To be discovered — Tachycardia Mechanism increased cardiac output, stroke volume, and decreased peripheral resistance 291,292  
HTN Initial prescription with β blockers 
Tremors  
Other signs of hyperthyroidism  
 Hyperparathyroidism — — Hypercalcemia Mechanism unknown, may not remit after treatment of hyperparathyroidism 293,294  
Other signs of hyperparathyroidism 

ACTH, adrenocorticotropic hormone; AD, autosomal dominant; AR, autosomal recessive; DHEAS, dehydroepiandrosterone sulfate; DOC, deoxycortisol; MR, magnetic resonance; PA, primary hyperaldosteronism; PAC, plasma aldosterone concentration; RAS, renin angiotensin system; —, not applicable.

a

influenced by posture, specialized center preferred.

Close Modal

or Create an Account

Close Modal
Close Modal